Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 [ 262 ] 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

Softswitching

JiCf)

Subinterval: 1

9 = ш/


Conducting devices: X

Fig, 20,24 A ZVS quasi-resonant buck converter: (a) circuit, (b) tank waveforms,

of the PWM switch, the peak transistor blocking voltage is substantially increased. This leads to increased conduction loss, because transistor on-resistance increases rapidly with rated blocking voltage.

20.3.2 The Zero-Voltage-Switching Multiresonant Switch

The resonant switch network of Fig. 20.25 contains tank capacitor in parallel with diode Dj, as in the ZCS switch network of Fig. 20.22. In addition, it contains tank capacitor in parallel with the SPST switch, as in the ZVS switch network of Fig. 20.23. In consequence, all semiconductor elements switch at zero voltage. This three-element resonant switch network is known as the zero-voltage-switching multiresonant switch (ZVS MRS). Since no seiniconductor output capacitances or diode recovered charges lead to ringing or switching loss, the ZVS MRS exhibits very low switching loss. For the same reason, generation of electromagnetic interference is reduced.

A half-wave ZVS MRS realization of the buck converter is illustrated in Fig. 2().2й. In a typical design that must operate over a 5:1 load range and with 0.4 < )i <0,6, the designer might choose a maximum f of 1.0, a maximum 7of 1.4, and C;/C, = 3, where these quantities are defined as follows:



ТЛЛГ

Fig. 20,25 Elimination of eonverter low-frequency elettienU гейиееь the ZVS rnultireaonanl switch cell to this network.

(20.65)

As tistial, the conversion ratio i.s tlefined as - Vj/V,. The resulting peak transistor voltage ft)r this typical design is approximately 2.8Vj, while the peak transistor current is 2/. Hence, conduction losses are higher than in an equivalent PWM switch. The range of switch conversion ratios ji is a function ofthe capacitor ratio CJC/, in a good design, values of fi ranging from nearly one to nearly zero can be obtained, with a wide range of dc load currents and while maintaining zero voltage switching.

Analysis and design charts for the ZVS MRS are given in [5-8]. Results for the typical choice Cj = 3C\ are plotted in Fig. 20.27. These plots illustrate how the switch conversion ratio (l varies as a function ofload current and switching frequency. Figure 2().27(a) also illustrates the boundary of zero-voltage switching: ZVS is lost for operation outside the dashed lines. Decreasing the ratio of Q to Cj reduces the area ofthe ZVS region.

Other resonant converters in which ail semiconductor devices operate with zero voltage switching are known. Examples include some operating mtKles of the parallel and LCC resonant converters described in Chapter 19, as well as the ciass-E converters descriljed in [10-12].

(,(0

2(0.

ТППР

R < V

Fig, 20.26 Half-wave ZVS multiresonant buek converter,



78Й Scf! Switching


OJ IJO 1.3 2.0 2.5 J


Fifi. 20.27 Cotivwsion ratio fi lot tlic multi-resoiiuoi .switch with C= ЗС,.: (a) coiivcraoii ratio д vs. nomialized current J {solid lines: conversion ratio; dashed lines: boundaries of zero-vultage switching), (b) conversion ratio ;r vs, noinialized switching frequency



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 [ 262 ] 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300