Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 [ 276 ] 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

points, the quiescent (de) voltiiges and currents in the ciicuit iire nearly the same. Nevertheless, the frequency responses tire qualitatively very different in the two operating tnodes. In CCM, the converter exhibits a fourth-order re.4pot1.4e with two pairs of high-2 complex-conjugate poles and a pair of complex-conjugate zeros. Another RHP (right-half plane) zero can be observed at frequencies approaching 50 kHz. In DCM, there is adominaut low-frequency pole followed by a pairof complex-conjugate poles and a pair of complex-conjugate zeros. The frequencies of the complex poles and zeros are very close in value. A high-frequency pole and a RHP zero conttibute additional phase lag at higher frequeitcies.

In the design ofa feedback controller around a converter that may operate in CCM or in DCM, one should take into account that the crossover frequency, the phase margin, and the closed-loop respoiLses ctm be substantially different depending on the operating tnode. This point is illustrated by the exatnple of the next section.


120 V

120 V

L,500pH 0.1a

SEPIC frequency response

... Other parts ot the netlist omitted ...

duty cycle inpul:

vc 5 Ode 0.4 ac 1

subcircuit

Xswitdt 2 04 3 5 CCM-DCMl

+ PARAMSj L=e3.3uH !в=100кНг

,11b switch.lib

anysis setup:

,ac dec 201 5 50kHz

.end

Ci 47 (iF


ССМ-СЮМ1

200 HF =

load

switch /.= S3.3iH /,= 11ЮкНг

Fig, B.13 SEPIC simulation example; (a) converter circuit, (b) averaged circuit model for simulation.



80 dBV


.-90*

-180

-270*

50 Шг

Fig. B.14 Magnitude and phase responses of the control-to-output transfer function obtained by simulation of the SEPIC example, lor two vahiea of tbe load resistance. For Л = 50 Й, the converter operates in DCM (solid lines), and for Д = 40 SI, the converter operates in CCM (dotted lines).

B.2.2 Example: Loop Uain and Closed-Loop Responses of a Buck Voltage Regulator

A controller design for a buclt converter example is discussed in Section 9.5.4. The converter and the block diagram ofthe controller are shown in Fig. 9.22. This converter system is designed to regulate the dc output voltage at V= 15 V for the load current up to 5 A. Let us test this design by simulation. An averaged circuit model of a practical realization of the buck voltage regulator described in Section 9.5.4 is shown in Fig, B,15. The MOSFET and the diode switch are replaced by the averaged switch model implemented as the CCM-DCMl subcircuit. The pulse-width modulator with = 4 V is modeled according to the discus.sion in Section 7.fi as a dependent voltage source E controlled by the PWM input voltage v. The value of fij , is equal to ifVj = 0.25 times the PWM input voltage v, with a limit for the minimum value set to 0.1 V, and a limit for the maximum value set to 0.9 V. The outptit of the pulse-width modulator is the control duty-cycle input to the CCM-DCMl averaged switch subcircuit. Given the specified limits for £ , , the switch duty cycle d{tj can take values in the range:

fJ , <rf(l)<0.

(D.S)

where = 0.1, and D = 0.9. Practical PWM integrated circuits often have a limit D , < 1 for the maximum possible duty cycle. The voltage sensor and the compensator tire implemented around an op-amp LM324. With very large loop gain in the system, the steady-state error voltage is approximately zero, i.e., the dc voltages at the plus and the tniiius inputs of the op-amp are almost the same.



v(5)= V

(B.9)

As a result, the quiescent (dc) oittput voltage V is set by the reference voltage vjand the voltage divider comprised of R, /2 4-

(B.IO)

By setting the ac reference voltage f,;,;-to zero, the combined transfer function of the voltage setisor atid the compensator can be fotmd as:

This transfer function can be written in factored pole-zero form as

where

G,.ff

(B.ll)

©

4=100 kHz

L SOpH

3 U>AD

* It kfl *

S5kn

120 kn

+12 V

value = {LIMim26 v, CI, C9)J

©

.nodesat v(3).15 v(5)rf v(6)=:4.t44 v(e)=D.S36

1.1 nF

47 Ш

Fig. B.15 Buck voltage regulator example.



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 [ 276 ] 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300