Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 [ 286 ] 287 288 289 290 291 292 293 294 295 296 297 298 299 300

ТППГ

- -(

n 1

1 : л

Fig, CilS Measurement of Z(s) and Z (j): (a) determination of Z;j(i), (b) determination otZs).

Under the conditions that the transformer is ideal (i.e., the transformer magnetizinj open eiretiited), then the transfer ftmction is given by:

C(.(),

inductance L/ is

(C.36)

We ean therefore employ the extra element theorem to determine how finite magnetizing inductance changes G(s). With reference to Fig. C. I, the system input is v (.?), the output is the voltage vj), and the port is the primary winding of the transformer, where the magnetizing inductance is connected. In the presence of the magnetizing inductance, the transfer ftmction becomes

G(i) =

Z(j) j

(C.37)

where S,s) is the impedance of the magnetizing inductance referred to the primary winding, sLi.

Figure C.15(a) illustrates determination ofZQ(j). The input source Vj(i) is set to zero, and the impedance between the terminals of the port is fotmd. It can be seen that the impedance ZQ(f) is the parallel combination of the impedances of the tank indtictor, tank capacitor, and the reflected load resi-tance:

(C.3S)

Figure C.15(b) illustrates determination of Zy(.r). In the presence of the input .source Vj[(.r), a Current i(.r) is injected at the port as shown. This current is adjusted such that the output vj[s) is nulled. Under these conditions, the quantity Zj) is given by v(s)li(.\}. It can be seen that nulling v {s) also nulls the voltage vis). Therefore,




Fig. СЛ6 To avoid signifitantly changing the transfer function G(s). the transfoftner should be designed such that Z .

7 u\-

{C.39)

Note that, in general, i(s) will not be equal to zero during the Zf{s) measurement. The null condition is achieved by setting the source equal to the value - V(j!)JsL. Thus, in the presence of finite magnetizing inductance, the transfer function G(s) can be expressed as follows:

ic.m

We can now plot the impedance inequalities (C.27) that guarantee that the magnetizing inductance does not stibstantially modify C(.c). The Zp{s) given in Eq. (C.38) is the impedance of a parallel re.sonant circuit. Con.4truction of the magnitude of this impedance is described iu Section 8.3.4, with results illustrated in Fig. C.16. To avoid affecting the transfer function C(j), the impedance ofthe magnetizing inductance must be much greater than Zjijisi) over the range of expected operating frequencies. It can be seen that this will indeed be the case provided that the impedance of the magnetizing inductance is greater than the impedances of both the tank inductance and the reflected load impedance:

L 3i. L, and

where 0)0= \/{JlC) . These conditions can be further reduced to

Lu~ - E, and

(C.41)

(C,42)

C.4.3 Addition uf an Input Filter tu a Cunverter

As discussed in Chapter 10, the addition of an input filter to a switching regulator can significantly alter its loop gain T{s). Hence, it is desirable to design the input filter so that it does not substantially change



©

Input filter

Converler

Controller j.

ns)]

Fig. C,17 Addition of an input filter to a switching voltage regulator system.

tlie converter eontroi-to-output transferfunction GjW. The Extra Element Theorem can provide design criteria that show how to design such an input filter.

Figtire C.17 illustrates the addition of an input filter to a switching voltage regulator system. The control-to-output transfer function of the converter power stage is given by:

GJs)

v{s)

J(s)

(CAi)

; t>)=

The quantity Zfs) is the Thevenin equivalent output impedance of the input filter. Upon setting v{s) to zero in Fig. C.17, the system of Fig. CIS is obtained. It can be recognized that this system is of the same form as Fig. C.2, in which the extra element is the output impedance ZJs) of the added input filter. With no input filter \ZJjs) = 0], the original transfer function Gi,/OI,f,) is obtained. In the presence of the input filter, C!,j(s) is expressed according to Eq. (C.3):

Z(s) \ Z,v(.v)

Z(s) -Z {s)

fC.44)

where

Z (.v)= Z,(i}

(C.45}

Fig, CIS Determination of tho control-to-ouiput transfer J.)

fmicdoii Gj.jf.O for die system of Fig, C,17.

Converter GJs)/



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 [ 286 ] 287 288 289 290 291 292 293 294 295 296 297 298 299 300