Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 [ 287 ] 288 289 290 291 292 293 294 295 296 297 298 299 300

is the itnpedance seen looking into the power inpnt port of the eonverter wlien is set to zero, and

(C.46)

is the impedance seen looking into the power input port ofthe eonverter when the converteroutput С is nulled. The null condition is achieved by injecting a test current source Г., at the converter input port, in the presence of г/ variations, and adjusting such that \ is nulled. Derivation of expressions forZ,(.!) and Zp(,i) for a buck converter example is described in Section 11X3.1.

According to Eq. (C.28), the input filter does not significantly affect G,{s) provided that

; I zM) \

(C.47}

These inequalities can provide an effective set of criteria for designing the input filter Bode pk)ts of 11 ZfJJii)) II and II Zsijiii) II are constructed, and then the filter element values are chosen to satisfy (C.47). Several examples of this procedure arc explained in Chapter 10.

C.4.4 Dependence of Tran.si.stor Current un Load in a Resunant Inverter

The conduction loss caused by circulating tank ctirrents is a major problem in resonant converter design. These currents are independent of, or only weakly dependent on, the load current, and lead to poor efficiency at light load. The origin of this probletn is the weak dependence ofthe tank network input impedance on the load resistance. Forexample, Fig. C.19 illustrates the model ofthe ac portion of a resonant inverter, derived using the sinusoidal approximation of Section 19,1. The resonant network contains the tank inductors and capacitors of the converter, and the load is the resistance R. The current ijf) flowing in the effective sinusoidal source is equal to the switch current. This model predicts that the switch current !,(s) is equal to ij,](.?)/Z,(j), where Zj(j) is the input impedance ofthe resonant tank network. If we want the switch current to track the load current, then at the switching frequency Z. should be dominated by, or at least strongly influenced by, the load resistance R. Unfortunately, this is often not consistent with other requirements, in which Z is dominated by the impedances ofthe tank elements. To design a resonant converter that exhibits good properties, the engineer must develop physical insight into how the load resistance Я affects the tank input impedance and otitput voltage.

Transfer funclion

Kg. c.19 Resonant lEivetter model.

Effeclive .vinu.soidat source

.,(0

Resonant network.

Purely reactive

Effective resistive load R



Inpul

Resonant

network

v(t) .

Output

-о-

Extra element R

Fig. C.20 ApplicBiioti of the Extra Element Theorem lo the system ot Fig. C. 19, to expose the dependence of Z/i) on Д.

To expose the dependence of Zj(.l) on the load resi.stance R, we can treat R as the extra element as in Fig. C.20. The inptit impedance Z((.v) 1.4 viewed as the transferfunction from the current i, to the voltage У.,; in thi.s sense, i is the input and ij is the otitput. Equations (C.2) and (С.Э) then imply that Zj(i) can be expressed as follows:

l. Z(,v)

1 +-

Z (.)

Z,j(.v)

(C.4S)

(C.49)

Here, the impedance Z/fjIs) is

i.e., the input impedance Z-(s} when the load terminals ate shorted. Likewise, the impedance Z.J,s} is

Z, (J)= Z,(.t)L

which is the input itnpedance Z{s) when the load is disconnected (open circuited),

Determination of Zj,(.?) aitd Z(j(,?) is illustrated in Fig. C.21. The quantity Zi) is found by nulling the output vj to zero, and then solving for v(j)(.s). Thequantity 7(л) coincides with the conventional output impedance Z (.0 illustrated in Fig. C.19. In Fig. C.21(a), the act of nulling v, iseqiiivalent to shorting the source v, of Fig. C.19. In Section 19.4, thequantity Z,(j) is denoted Z,(j), because il coincides with the converter output impedance with the switch network shorted.

The quantity Z,(i) is found by setting the input !\. to zero, and then solving for v(syi{s). The quantity Z(,?) coincides with the output impedance Z/j) illustrated in Fig. C.19, under the conditions that the .source is open-circuited. In Section 19.4, thequantity Z(,t) is denoted Z(.v), because it coincides with the converter output impedance with the switch network open-circuited. The reciprocity relationship, Eq. (C.4), becomes

Zjjs)

(C.51)

The above results are used in Section 19.4 to expose how conduction losses and the zero-voltage switching boundary depend on the loading ofa resonant converter.



Resonani network

да (t

v(t) Q

Input

Output

Resonant netH-ork

Fig. C.21 Derermination of the quantities Zf/.s) and Zp(s-) for tiie neiwork of Fig. C,20: (a) finding Zis), (b) finding ZpW.

References

[1] R. D. Middlebrook, Nnll Double Injection and the Extra Element Theorem, IEEE Transactions on Education, vol. 32. No. 3. Aug. 167-ISO.

[2] R. D. MiDDLEBROOK, Thc Two Extra Element Theorem, IEEE Frontiers in Education Conference Pre-

ceedings, Sept. 1991, pp. 702-708.

[3] R. D, Middlebrook, V. Vorperi.as, and J. Lindal, The N Extra Element Thcoiciu, IEEE Transac lions on Circuits and Systems I: Fundamental Theory and Applications, Vol. 45, No. 9, Sept. 199S, pp. 919-935.



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 [ 287 ] 288 289 290 291 292 293 294 295 296 297 298 299 300