Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 [ 292 ] 293 294 295 296 297 298 299 300

of butk-b(K)sl, 16, 124, 420

of Cuk L-onverler, 29-30, 420

of loss-free resislar networks, 416-418

in Jow-harmDnic rectifiers, 641-642

modeling ef, 39-42

of t]itasi-resi)niinl converters, 762, 770, 778

olparallel resonant converter, 719-721. 748-752

оГ SEPIC, 146,420

of series resonant converter. 716-718, 740-748 via sinusoidal approiimalion, 714-715 Copper loss

allocation of window area to minimize, 545-550, 567-568

high frequency effecls skin effect, 508-510 proximity effect, 510-525

inductor design lo meel specified, 539-545

low frequency, 508

modeling in converlers, 43-53

multiple winding de.4ign to meet specified. 545-554 Core lo.ss, 506-507, 527-529, 560-562, 565-567 Correction facior (tfe also Extra element theorem),

384, 844, 849 Coupled inductors, 529-530, 545, 550-554

in (:uk converter, 534-535, 529

design of, 545-554

in muliiple-output buck-derived converters, 529-530, 554-557 Crossover Irequency, 338-346 converter active switch utilization uf, 173 as cascaded boost and buck converters, 136-137 ccraversitra ratio Мф), 30. 420 DCM averaged switch model of, 418-420 as low-harmonic reciifier, 645-646, 650. 676 as rotated three-terminal cell, 136-137 steady-.slale analysis of, 27-31 transformer design example, 573-576 with transformer isolation, 170-171 Currenl-fed bridge, 144-145 Currenl injection, 367-368 Cnrrent programmed control, 439-487 ac modeling of

via averaged switch modeling, CCM, 454-459 via averaged switch modeling, DCM, 473-480 CCM more accurate model, 459473 CCM simple approximation, 449-459 ariificial ramp, 445449 controller circuit, 440. 446 controller small-signal block diagram, 459464 in full-bridge buck converters, 152 in half-bridge buck converters, 154, 441

in low harmonic rectifiers, 654-656

oscillation for 0 > 0.5, 441449

in push-pull buck converters, 160, 441

Current ripple (.fu inductorcurrent ripple)

Currenl sense circuii, isolated, 181-182

Current source inverter (CSl), 142-143

Cycloconverter, 1, 72-73

Damping {see also f-factor. Input fillers) facior . 283

of input fillers, 380, 385-392

optimal, 392-398

vs. overshoot, 346-347 DC conversion ratio (see Conversion ratio M) DC lint, S-9 DC transformer model

in averaged switch models, 232-235, 237-241, 247

in canonical model, 248-253

comparison wilh DCM model. 410

derivauon of, 4042

equivalence wilh dependent sources, 40 manipulation of circuits containing, 41-42, 47-48 in a nonideal boost converter, 47-48, 55 in a nonideal buck converter, 51 in small-signal ac CCM models. 204-205, 2 1 2-213 Decibel, 267-268

Della-wye transformer connection, 628-629 Dependent power source [see Power source element) Derating factor, 174 Design-orienled analysis, techniques of

analytical expressions for a.syraplotes, 281

approximate factorization, 289-293

doing algebra on the graph, 302-317

extra element theorem, 843-861

frequenty inversion, 277-278

graphical tonstruciion of Bode plots, 302-3(7 of closeddoop transfer funclions. 337-340

input filler design inequalities, 381-385, 392, 399

load-dependent properties of resonant inverters, 726-740

low 2 approximation, 287-289

philosophy of, 267, 302-303 Differential connection of load

polyphase inverter, 141-143

single-phase inverter, 138-141 Diode

antiparallel, 67

characteristics of,77

fast recovery, 77

forward voltage drop {see also Semiconducior conduction losses), 52-55, 77



freewheeling, 67 piirallel operation of, 77

reeovered charge Q 76-77, 96-98, 722, 763-764, 781

recovery meehanismi;, 76-77, 96-98 Schottky, 74, 77, 99 soft recovery, 97-98 snubbing of, 97, 99, 764-765 switching loss, 96-100, 763-765 swilthing waveforms, 76-77, 97, 100, 763-765 lero current switching of, 764, 783 zero voltage switching of, 722-724, 781, 784-785, 787

Discontinuous conduction mode (DCM) В-И кк>р, effect on, 5.30-53) boost converter exaraple, 117-124 buck converter example, 108-117 hnck-boost converter example, 410-418 in Current programmed converters, 473-480 equivalent circuit modeling of, 409420, 473477 in forward converter, 158

in line-coramutaled rectifiers, 611-614, 616-617 in low-harmonic recltfters

boost reclifier, 643-646, 832-834

flyback reclifier, 646-648 mode boundary

in boost rectifier, 643-646

vs. K. 110-112, 118-119, 123-124

vs. load current and R, 418

origin of, 108-112 in parallel resonant converter, 749-752 in PWM conveners, 107-130, 409437, 473480 in series resonant converter, 741-74S sraall-signal ac modeling of, 420-433 Displacement factor, 596, 599

Distortion facior [see ab Total harraontc distortion), 596-597

of single-phase reclifier, 596, 610-613 Distributed power system, 7

Doing algebra on the graph (see Graphical construction

of Bode plots) Duty ratio

complement of, 14

definition of, 14

EC core data, 866 Eddy currents

in magnetic cores, 506

in winding conductors, 508-511 EE core data, 865 Effeclive resistance

in DCM averaged switch model, 413-420

in loss-free resistor model, 4 13-420 in resonant cunverter models

wilh capacitive fiher network, 711-713 with inductive filler network, 718-720 Emulated resistance ft, Й38-640 Efftttenty, 2

averaged switch modeling, predicted by, 247 of IxKwt converter

as low-harraontc reclifier, 68385 nonideal dc-dc. 4849, 55 calculation via averaged mudel, 4849, 55 vs. switching frequency, 100-101 Equivalent circuit modeling

by Canonical circuit model, 247-253 of CCM converter.s operating in steady-slate, 39-61 of converters havingpulsaling inpul currents, 50-52 of current programmed switch networks CCM, 454459 DCM,473-480

small-signal models, 452453, 457459, 478480 of flyback converler, CCM, 165, 212-213 of ideal rectifiers, 638-640, 658-686 of ideal dc-Jc converters, 39-41 of inductor copper los.s, 4-2-52 small-signal models. Construction of

CCM. 201-203,21 1-213,225-226

DCM, 420433

current programmed, 452-453, 457-459, 478-480 of switching luss, 246-247 of switch networks

CCM, 235-241

DCM, 410-420 of systems containing ideal rectifiers, 666 Ecjuilibrium [see Steady slate)

Ecjuivalem series resistance (esr} of capacitor, 602-603 ETD core data, 866

Evaluation and design of converters, 171-176 Experimental lechnicjues

measurement of impedances, 318-321 measurement of loop gains by current injection, 367-368 by voltage injection, 364-367 of an unstable system, 368 raeasuremenl of sraall-signal transfer functions, 317-318

Extra elemeni theorem, 843-861 applications of

input fiitci-design, 3S1-392, 398-399, 857-859 transfer function, solving for, 850-855 unraodeled element, effects of, 855-857 resunant inverter, Iuad dependence of, 731, 859-861



Imkx

basic result, 843-846 currecliHU factor, 384, 844. 849 deviation caused by, 850-852 derivation, 846-849 impedance ineijuaiiLtes, 849-850 nulling, 845-846

reciprocity relationship, 736, 845 Zjj driving-point impedance, 845 Zfj impedance, 845-846

Factorizadon, approximate

approximate roots of arbitrary-degree polynomial, 289-293

graphttal construction of Bode diagrams, 302-317 low-2 approximation, 287-289 Faradayslaw, 492-493

Feedback [see Control system design, Negative feedback) Ferrite

applications of 528, 556, 557. 574, 577 core k)ss, 506-507, 527-529, 566 core tables, 863-867

.saturation Них dens-tty, 495, 503, 507, 527

Fill facior (see ЛГ )

Filter design [see Input filler design)

Fillet inductor

В-И loop of, 527 design of

derivation of procedure, 539-544 step-by-step procedure, 544-545

Flux Ф, 492

Flux density В definition, 492 saturation value iijjjj, 495

Flux-linkage balance [see Inductor volt-second balance)

Flyback converler (see also Buck-boosL converter) active switch utiliiation, 171-174 derivadiin of, 161-162 nonideal, ac modeling of, 204-213 rectifier, 646-648

spreadsheei design example, 174-176

sleady-state analysis of, 161-165

two transistor version, 180

utilization of flyback transformer, 165 Flyback transformer, 522, 530-53 1. 552

design example. 557-562 Forc-ed commutation of SCRs, 89-90 Forward converter (see also Buck converter), 154-159

active switch utilization, 173

spreadsheet design example, 174-176

steady-state analysis of, 154-159

transformer reset mechanisms, 157-158

Iransformeriililizalion in, 159

two transistor version, 158-159 Four-quadrant switches (see Switch) Freewheeling diode, 67

Gate turn-off thyristor (GTO), 90

Geometrical constant (see K, K)

Graphical construction of Bode plots (see also Bode

plots, Design-orienled analysis)

of converter transfer functions, 313-317

division, 311-313

of harmonic trap filters, 622-628

parallel combinations, 308-310

parallel resonance, 309-310

of parallel resonani converter, 720-721

series CHmbinadons, 303-307

series resonance, 305-307

of series resonant converler, 715-717 Grounding problems, 319-321 Gyralor, 744-745

Harmontc correction, 690-691 Harmonic loss factor 523-525 Harmonics in power systems

average power vs. Fiiurter series, 590-593

distortion facior, 5%

harmonic .standard.s, 603-605

neutral currents, 599-600

power facior, 594-598

root-mean-square value of waveform, 593-596

rectifier harmonics, 597-598

in three-phase .systems, 599-603

total harmonic distortion, 596 Harmonic trap fthers, 622-628

bypass resistor, 626-628

parallel resonance in, 624-626

reactive power in, 628 H-bridge. 7. 139-141. 143-145 Hold-up time, 665 Hoi spol formation, 77, 88 Hysteresis loss Рц, 506 Hysteretic control, 657-659

Ideal rectifier (see also Low harmonic rectifiers) in converter system.s, 663-673 properties of, 638-640 realization of

single phase, 640-648

three phase, 687-691 rms values of waveforms in, 673-677 single phase, 638-642



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 [ 292 ] 293 294 295 296 297 298 299 300