Строительный блокнот Introduction to electronics of butk-b(K)sl, 16, 124, 420 of Cuk L-onverler, 29-30, 420 of loss-free resislar networks, 416-418 in Jow-harmDnic rectifiers, 641-642 modeling ef, 39-42 of t]itasi-resi)niinl converters, 762, 770, 778 olparallel resonant converter, 719-721. 748-752 оГ SEPIC, 146,420 of series resonant converter. 716-718, 740-748 via sinusoidal approiimalion, 714-715 Copper loss allocation of window area to minimize, 545-550, 567-568 high frequency effecls skin effect, 508-510 proximity effect, 510-525 inductor design lo meel specified, 539-545 low frequency, 508 modeling in converlers, 43-53 multiple winding de.4ign to meet specified. 545-554 Core lo.ss, 506-507, 527-529, 560-562, 565-567 Correction facior (tfe also Extra element theorem), 384, 844, 849 Coupled inductors, 529-530, 545, 550-554 in (:uk converter, 534-535, 529 design of, 545-554 in muliiple-output buck-derived converters, 529-530, 554-557 Crossover Irequency, 338-346 converter active switch utilization uf, 173 as cascaded boost and buck converters, 136-137 ccraversitra ratio Мф), 30. 420 DCM averaged switch model of, 418-420 as low-harmonic reciifier, 645-646, 650. 676 as rotated three-terminal cell, 136-137 steady-.slale analysis of, 27-31 transformer design example, 573-576 with transformer isolation, 170-171 Currenl-fed bridge, 144-145 Currenl injection, 367-368 Cnrrent programmed control, 439-487 ac modeling of via averaged switch modeling, CCM, 454-459 via averaged switch modeling, DCM, 473-480 CCM more accurate model, 459473 CCM simple approximation, 449-459 ariificial ramp, 445449 controller circuit, 440. 446 controller small-signal block diagram, 459464 in full-bridge buck converters, 152 in half-bridge buck converters, 154, 441 in low harmonic rectifiers, 654-656 oscillation for 0 > 0.5, 441449 in push-pull buck converters, 160, 441 Current ripple (.fu inductorcurrent ripple) Currenl sense circuii, isolated, 181-182 Current source inverter (CSl), 142-143 Cycloconverter, 1, 72-73 Damping {see also f-factor. Input fillers) facior . 283 of input fillers, 380, 385-392 optimal, 392-398 vs. overshoot, 346-347 DC conversion ratio (see Conversion ratio M) DC lint, S-9 DC transformer model in averaged switch models, 232-235, 237-241, 247 in canonical model, 248-253 comparison wilh DCM model. 410 derivauon of, 4042 equivalence wilh dependent sources, 40 manipulation of circuits containing, 41-42, 47-48 in a nonideal boost converter, 47-48, 55 in a nonideal buck converter, 51 in small-signal ac CCM models. 204-205, 2 1 2-213 Decibel, 267-268 Della-wye transformer connection, 628-629 Dependent power source [see Power source element) Derating factor, 174 Design-orienled analysis, techniques of analytical expressions for a.syraplotes, 281 approximate factorization, 289-293 doing algebra on the graph, 302-317 extra element theorem, 843-861 frequenty inversion, 277-278 graphical tonstruciion of Bode plots, 302-3(7 of closeddoop transfer funclions. 337-340 input filler design inequalities, 381-385, 392, 399 load-dependent properties of resonant inverters, 726-740 low 2 approximation, 287-289 philosophy of, 267, 302-303 Differential connection of load polyphase inverter, 141-143 single-phase inverter, 138-141 Diode antiparallel, 67 characteristics of,77 fast recovery, 77 forward voltage drop {see also Semiconducior conduction losses), 52-55, 77 freewheeling, 67 piirallel operation of, 77 reeovered charge Q 76-77, 96-98, 722, 763-764, 781 recovery meehanismi;, 76-77, 96-98 Schottky, 74, 77, 99 soft recovery, 97-98 snubbing of, 97, 99, 764-765 switching loss, 96-100, 763-765 swilthing waveforms, 76-77, 97, 100, 763-765 lero current switching of, 764, 783 zero voltage switching of, 722-724, 781, 784-785, 787 Discontinuous conduction mode (DCM) В-И кк>р, effect on, 5.30-53) boost converter exaraple, 117-124 buck converter example, 108-117 hnck-boost converter example, 410-418 in Current programmed converters, 473-480 equivalent circuit modeling of, 409420, 473477 in forward converter, 158 in line-coramutaled rectifiers, 611-614, 616-617 in low-harmonic recltfters boost reclifier, 643-646, 832-834 flyback reclifier, 646-648 mode boundary in boost rectifier, 643-646 vs. K. 110-112, 118-119, 123-124 vs. load current and R, 418 origin of, 108-112 in parallel resonant converter, 749-752 in PWM conveners, 107-130, 409437, 473480 in series resonant converter, 741-74S sraall-signal ac modeling of, 420-433 Displacement factor, 596, 599 Distortion facior [see ab Total harraontc distortion), 596-597 of single-phase reclifier, 596, 610-613 Distributed power system, 7 Doing algebra on the graph (see Graphical construction of Bode plots) Duty ratio complement of, 14 definition of, 14 EC core data, 866 Eddy currents in magnetic cores, 506 in winding conductors, 508-511 EE core data, 865 Effeclive resistance in DCM averaged switch model, 413-420 in loss-free resistor model, 4 13-420 in resonant cunverter models wilh capacitive fiher network, 711-713 with inductive filler network, 718-720 Emulated resistance ft, Й38-640 Efftttenty, 2 averaged switch modeling, predicted by, 247 of IxKwt converter as low-harraontc reclifier, 68385 nonideal dc-dc. 4849, 55 calculation via averaged mudel, 4849, 55 vs. switching frequency, 100-101 Equivalent circuit modeling by Canonical circuit model, 247-253 of CCM converter.s operating in steady-slate, 39-61 of converters havingpulsaling inpul currents, 50-52 of current programmed switch networks CCM, 454459 DCM,473-480 small-signal models, 452453, 457459, 478480 of flyback converler, CCM, 165, 212-213 of ideal rectifiers, 638-640, 658-686 of ideal dc-Jc converters, 39-41 of inductor copper los.s, 4-2-52 small-signal models. Construction of CCM. 201-203,21 1-213,225-226 DCM, 420433 current programmed, 452-453, 457-459, 478-480 of switching luss, 246-247 of switch networks CCM, 235-241 DCM, 410-420 of systems containing ideal rectifiers, 666 Ecjuilibrium [see Steady slate) Ecjuivalem series resistance (esr} of capacitor, 602-603 ETD core data, 866 Evaluation and design of converters, 171-176 Experimental lechnicjues measurement of impedances, 318-321 measurement of loop gains by current injection, 367-368 by voltage injection, 364-367 of an unstable system, 368 raeasuremenl of sraall-signal transfer functions, 317-318 Extra elemeni theorem, 843-861 applications of input fiitci-design, 3S1-392, 398-399, 857-859 transfer function, solving for, 850-855 unraodeled element, effects of, 855-857 resunant inverter, Iuad dependence of, 731, 859-861 Imkx basic result, 843-846 currecliHU factor, 384, 844. 849 deviation caused by, 850-852 derivation, 846-849 impedance ineijuaiiLtes, 849-850 nulling, 845-846 reciprocity relationship, 736, 845 Zjj driving-point impedance, 845 Zfj impedance, 845-846 Factorizadon, approximate approximate roots of arbitrary-degree polynomial, 289-293 graphttal construction of Bode diagrams, 302-317 low-2 approximation, 287-289 Faradayslaw, 492-493 Feedback [see Control system design, Negative feedback) Ferrite applications of 528, 556, 557. 574, 577 core k)ss, 506-507, 527-529, 566 core tables, 863-867 .saturation Них dens-tty, 495, 503, 507, 527 Fill facior (see ЛГ ) Filter design [see Input filler design) Fillet inductor В-И loop of, 527 design of derivation of procedure, 539-544 step-by-step procedure, 544-545 Flux Ф, 492 Flux density В definition, 492 saturation value iijjjj, 495 Flux-linkage balance [see Inductor volt-second balance) Flyback converler (see also Buck-boosL converter) active switch utiliiation, 171-174 derivadiin of, 161-162 nonideal, ac modeling of, 204-213 rectifier, 646-648 spreadsheei design example, 174-176 sleady-state analysis of, 161-165 two transistor version, 180 utilization of flyback transformer, 165 Flyback transformer, 522, 530-53 1. 552 design example. 557-562 Forc-ed commutation of SCRs, 89-90 Forward converter (see also Buck converter), 154-159 active switch utilization, 173 spreadsheet design example, 174-176 steady-state analysis of, 154-159 transformer reset mechanisms, 157-158 Iransformeriililizalion in, 159 two transistor version, 158-159 Four-quadrant switches (see Switch) Freewheeling diode, 67 Gate turn-off thyristor (GTO), 90 Geometrical constant (see K, K) Graphical construction of Bode plots (see also Bode plots, Design-orienled analysis) of converter transfer functions, 313-317 division, 311-313 of harmonic trap filters, 622-628 parallel combinations, 308-310 parallel resonance, 309-310 of parallel resonani converter, 720-721 series CHmbinadons, 303-307 series resonance, 305-307 of series resonant converler, 715-717 Grounding problems, 319-321 Gyralor, 744-745 Harmontc correction, 690-691 Harmonic loss factor 523-525 Harmonics in power systems average power vs. Fiiurter series, 590-593 distortion facior, 5% harmonic .standard.s, 603-605 neutral currents, 599-600 power facior, 594-598 root-mean-square value of waveform, 593-596 rectifier harmonics, 597-598 in three-phase .systems, 599-603 total harmonic distortion, 596 Harmonic trap fthers, 622-628 bypass resistor, 626-628 parallel resonance in, 624-626 reactive power in, 628 H-bridge. 7. 139-141. 143-145 Hold-up time, 665 Hoi spol formation, 77, 88 Hysteresis loss Рц, 506 Hysteretic control, 657-659 Ideal rectifier (see also Low harmonic rectifiers) in converter system.s, 663-673 properties of, 638-640 realization of single phase, 640-648 three phase, 687-691 rms values of waveforms in, 673-677 single phase, 638-642 |