Строительный блокнот Introduction to electronics [hree phase, 6S5-687 lEC 10m,603-ft04 IEEE/ANSI sianJard 519, 604 Impedance graph pjper, 310 Inductor copper loss (rff Copper Joss) Inductor Current ripple in at inductor, 527-528 boost example, 25-26 buck esiiniple, 19 calculation of, 19 in converters containing two-pole fillers, 31-33 converter example, 30-31 in fiher inductor, 525-526 magnitude vs DCM, 108-110 Inductor design ac inductor design derivation, 580-581 step-by-slep procedure, 582-583 filter indLLCtor design derivation, 539-544 step-by-slep prucedure, 544-545 Inductor voll-seconJ balance boost example, 24 buck example, 21 Cuk converter example, 28-29 definition, 20 in Jisconliniious conduction mode, 112 Input filters, 377-408, 857-859 cascaded filter sections, 398-404 noninteraction, impedanceinequalities lor, 398-399 two-secdon design example, 400404 conducted EMI, allenuatiun of, 377-378 conducted suscepltbtlily, 378 damping of 391-404 Rf-C), parallel damping, 394, 395-396 parallel damping, 394, 396-397 RfLt series damping, 394 , 398 effect on conlrol-to-outpul transfer function buck example, 380, 389-392 general result, 381-382 negative resistance oscillations, 382-384 results tor basic converters, 382 right half-plane zeroes, 390 impedance inetjualities for design construction of, buck example, 385-389 conlrol-lo-oulput transfer funclion, to avoid changing, 384 output impedance, Ui avoid changing, 385 Inpul port, converler ac modeling of, 197 boosl static characlertstics, 643-644, 655-656 modeling of, via slate-space averaging, 222, 225-226 steady-slale modeling of, 50-52 Inrush current, 646, 665, 676 Insulated-gale bipolar transistor (IGBT) construction and operation of, 86-88 current tailing in, 87-88, 95-96 equivalent circuii, 87 forward voliage drop, modeling of, 88 idealized switch characlerisdcs, 65-66 parallel operation of, 88 switching loss in, 95-96, 768 Inversion of source and load, 132-133 Inverters, 1 high frequency, 705-709, 727-729, 732-739 line conimutated, 619 single phase, 7, 68-69, 138-141 sinusoidal analysis of resonani converters, 709-715, 726-740 three phase, 69-72, 141-143 Iron laminations, 495, 507 fC, dimensionless parameter criticalvalue :* (D). 110-112, 116-117, 124 and DCM boundary, 110-112, 116-117, 124 in line-commutated rectifier analysis, 612-613 in sleady-stale DCM analysis, 117, 123-124 K, core geometrical constant definition of, 543-544, 863 ferrile core tables of, 864-869 filter inductor design procedure using, 544-545 multiple winding magnetics design using, 545, 552-554 H, ac core geometrical constant ac induclor design procedure using, 580-583 definition of, 569-570, 863 ferrile core tables of, 864-869 transformer design using, derivation, 565-570 examples, 573-580 step-by-step procedure, 570-573 Kj, rectifier dimensionless parameter, 612-613 window uttliiiation factor,542 LCC resonani converter dependence of transistor current on load, 732-733 design example, 737-740 introduction lo, 705-707 ZVS/ZCS boundary, 734-737 Lenzs law, 493, 506, 508, 510 Linear ripple approximation {see Small ripple approximation) Llne-lij-imlpuL Lriinsfer funtlicm (J\,{f) of lhe buck, boost, and buck-boost converters in CCM, 300 canonical model, as predicted by. 248 closed-loop, 334-335, 339-340 conlro! system design of, 347-348, 361-362 of Current-programmed converters, 454, 464-466, 469471, 480 of DCM converters, 427 Litz wire, 522 Loop gain {see also Control .-iy.tem de.sign. Negative feedback) deftailton, 335 measurement of, 362-36S Loss-free resistor model averaged switch model of dtsconltnuous conduction mode, 413420 ideal rectifier model stnglepha.se, 638-640 three phase, 685-686 Low harmonic rectifiers [see also Ideal reclifiers) controller schemes average currenl control, 648-654 current programmed control, 654-656 critical conduction mode, 657-659 feedforward, 650-652 hysteredc control. 65759 nonlinear carrier control, 659-663 modeling of efficiency and losses, 678-685 low-bandwidth control loop, 668-673 wide-bandwidth average current control loop, 652-654 rms calculations in, 673-678 Low Q approximation, 287-289 Magnetic circuits, 498-501 Magnetic field И, 491-492 Magnetic path length definition, 497 ferrite core tables, 864-867 Magnetics, 489-586 ac inductor design, 580-583 basic relationships, 491498 copper loss, 42-45. 508, 510-525 core loss, 42, 506-508, 561-562 coupled inductor design, 550-557 ferrite core tables. 864-867 flyback Iransformer design, 557-562 inductor design, 539-562 inductor design, multiple winding, 550-562 magnetic circuits, 498-501 magnetic devices, types of, 525-531 optimizing Ul minimize total los.s, 569-570 optimizing window allocation to minimize copper loss, 545-550 proximity effeci, 508-525 transformer basics, 146-149, 501-505 Iransformer design, 565-583 Magnetizing current, 147-148, 502-504 Magnett>motive force (MMF) definition, 491-492 magnetic circuit, in, 498499 MMF diagrams, 512-514 Majority carrier devices (see also MOSFET, Schottky diode), 74-75 Matrix converter, 72-73 Meal length per turn [MLT] definition, 543 ferrile core tables, 864-867 Measurement of transfer functions and loop gains [see Experimental techniques) Middlebrooks extra element theorem (see Extra element theorem) Minority carrier devices {see also Bipolar junclion transistor. Diode, Gale lurn-off thyristor, Insulated-gale bipolar transistor, MOS-conlrolled thyristor, Silicon controlled rectifier), 74-75 Modulation index, 689-690 MOS-controlled thyristor (MCT), 91-92 MOSFET body diode, 67-68, 78-79 conduction loss, modeling of, 52-56, 204-213 , 816-819 con.struttion and operation of. 78-81 on resistance, 52-56, 78-81 swilching loss owing lo С , 98-99, 765-768 as synchronous rectifier, 73-74 terminal capacitances, 80-81 lypical characteristics, 80-81 zero-vollage and zero-current swilching of, 721-726, 765-768 Motor drive system, 8-9 Multiplying contfoller (see also Average currenl control, Current programmed control), 648-659 Multi-resonant switch, 784-786 Negative feedback [see also Control system design) effects of, on network transfer functions. 334-337 objectives of. 187,331-334 reduction of disturbances by, 335-337 reduction of sensidvily lo variations in forward gain by, 337 Nonlinear carrier control, 659-663 Nonrainimura-phase zero {лее Right half-plane zero) Oulpul charatLerislios oflhe parallel resonani oonverler. 750 of resonani inverters, 727-729 of Ihe Series resonani eonvener, 747-748 Overshoot, 346-347, 348 Parallel resonani eonverler analysis via sinusoidal approjiiraalion, 7)8-72) dependence of Iransislttr current on load, 730-731 es.ael characlerislics continuous conduction mode, 748-751 control plane, 751 discontinuous conduction mode, 749-751 ouiput plane, 750 introduction to, 705-706 Permeability Ц definition, 494495 of free space, Ц, 494 relative, p 495 Phase asymptotes ol complex poles, 284-285 inverted forms, 278 of real pole, 272-274 of real /еп), 275 of RHP zero, 276 Phase control of resonant converters, 705 of Ihree-phase rectifiers, 6)7-622 of zero-voltage transition dc-dc converter, 791-794 Phase margin vs. closed-loop damping facior, 342-346 inpul filler, undamped, effecl on, 390-391 stability (est, 341-342 Poles complex. Bode plots of, 282-286 the low Q approximation, 287-289 real. Bode plots of, 269-274 Pol core data, 864 Powdered iron, 495, 507 Power facior [see also Total harmonic distortion. Displacement factor. Distortion facior) definition of, 594-598 of bridge recdfier, single phase, 597, 6)0-6)3 of peak deteclton rectifier, 597 of phase-conlro)led reclifier, three phase, 616, 619-620 Power sink elemeni Isee Power source element) Power source elemeni in averaged switch models current programmed mode, CCM, 454-457 current programmed mode, DCM, 475-477 discontinuous conduction mode, 414-430 definidon of, 415-416 in ideal reclilier mode), 638-640, 646-647, 650, 666, 668-670, 686 linearization of, 383-384,423424, 457, 668-671 in loss-free resistor model, 416-417, 639-640 properties of, 415-416 in switched-mode regulators, 383-384,455, 665-666 PQ core data, 867 Proximity effecl Conductor spacing facUjr Г], 5l5 interleaving, effect on, 520-522 layer copper loss, 515-517 Litz wire, effect of, 522 MMF diagrams, 512-514 PWM waveform harmonics, 522-525 simple explanation, 5Q8-512 trans former design procedure, accounting for, 572 winding loss, lolal, 518-520 PSpice {see Simulation) Pulse width modulation (PWM), 4-6 modulator ac model, 253-255 operation of modulator, 253-255 spectrum of PWM waveform, 188-189 Push-pull isolated converters based on boost converler, 167-168 based on buck converter, 159-160, 441 Walkins-Johnson converler, 167-168 Q facior, 283-286 canonical model, predicted by, 300 closed-loop, vs. phase margin, 342-346 oflhe CCM buck, boost, and buck-boost converters, 300 graphical determination of, 307, 310, 312, 3)4 the low Q approximation, 287-289 vs. overshoot, 346-347 of parallel resonant circuii, 309-3)0 of series resonani circuit, 305-307 Quasi-re.sonanl converters {see also Mu)[i-resonant switch, Quasi-st]uare-wave switch) zero-current switching dc-dc full wave, 779-781 half wave, 768-779 zero-voltage .switching dc-Jc, 783-784 Quasi-square-wave converters, 787-790 Quasi-static approximation, 653-654 Quiesceni operaiing point, 190-191, 198,2205 Reactance graph paper {xee Impedance graph paper) Reactive power |