Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 [ 293 ] 294 295 296 297 298 299 300

[hree phase, 6S5-687 lEC 10m,603-ft04 IEEE/ANSI sianJard 519, 604 Impedance graph pjper, 310 Inductor copper loss (rff Copper Joss) Inductor Current ripple

in at inductor, 527-528

boost example, 25-26

buck esiiniple, 19

calculation of, 19

in converters containing two-pole fillers, 31-33

converter example, 30-31 in fiher inductor, 525-526 magnitude vs DCM, 108-110 Inductor design

ac inductor design

derivation, 580-581

step-by-slep procedure, 582-583 filter indLLCtor design

derivation, 539-544

step-by-slep prucedure, 544-545 Inductor voll-seconJ balance boost example, 24 buck example, 21 Cuk converter example, 28-29 definition, 20

in Jisconliniious conduction mode, 112 Input filters, 377-408, 857-859 cascaded filter sections, 398-404

noninteraction, impedanceinequalities lor, 398-399

two-secdon design example, 400404 conducted EMI, allenuatiun of, 377-378 conducted suscepltbtlily, 378 damping of 391-404

Rf-C), parallel damping, 394, 395-396 parallel damping, 394, 396-397

RfLt series damping, 394 , 398 effect on conlrol-to-outpul transfer function

buck example, 380, 389-392

general result, 381-382

negative resistance oscillations, 382-384

results tor basic converters, 382

right half-plane zeroes, 390 impedance inetjualities for design

construction of, buck example, 385-389

conlrol-lo-oulput transfer funclion, to avoid changing, 384

output impedance, Ui avoid changing, 385 Inpul port, converler ac modeling of, 197

boosl static characlertstics, 643-644, 655-656

modeling of, via slate-space averaging, 222, 225-226

steady-slale modeling of, 50-52 Inrush current, 646, 665, 676 Insulated-gale bipolar transistor (IGBT)

construction and operation of, 86-88

current tailing in, 87-88, 95-96

equivalent circuii, 87

forward voliage drop, modeling of, 88

idealized switch characlerisdcs, 65-66

parallel operation of, 88

switching loss in, 95-96, 768 Inversion of source and load, 132-133 Inverters, 1

high frequency, 705-709, 727-729, 732-739

line conimutated, 619

single phase, 7, 68-69, 138-141

sinusoidal analysis of resonani converters, 709-715,

726-740 three phase, 69-72, 141-143 Iron laminations, 495, 507

fC, dimensionless parameter

criticalvalue :* (D). 110-112, 116-117, 124 and DCM boundary, 110-112, 116-117, 124 in line-commutated rectifier analysis, 612-613 in sleady-stale DCM analysis, 117, 123-124

K, core geometrical constant definition of, 543-544, 863 ferrile core tables of, 864-869 filter inductor design procedure using, 544-545 multiple winding magnetics design using, 545, 552-554

H, ac core geometrical constant

ac induclor design procedure using, 580-583 definition of, 569-570, 863 ferrile core tables of, 864-869 transformer design using, derivation, 565-570 examples, 573-580 step-by-step procedure, 570-573 Kj, rectifier dimensionless parameter, 612-613 window uttliiiation factor,542

LCC resonani converter

dependence of transistor current on load, 732-733

design example, 737-740

introduction lo, 705-707

ZVS/ZCS boundary, 734-737 Lenzs law, 493, 506, 508, 510

Linear ripple approximation {see Small ripple approximation)



Llne-lij-imlpuL Lriinsfer funtlicm (J\,{f)

of lhe buck, boost, and buck-boost converters in

CCM, 300 canonical model, as predicted by. 248 closed-loop, 334-335, 339-340 conlro! system design of, 347-348, 361-362 of Current-programmed converters, 454, 464-466,

469471, 480 of DCM converters, 427

Litz wire, 522

Loop gain {see also Control .-iy.tem de.sign. Negative feedback) deftailton, 335 measurement of, 362-36S Loss-free resistor model

averaged switch model of dtsconltnuous conduction

mode, 413420 ideal rectifier model

stnglepha.se, 638-640

three phase, 685-686 Low harmonic rectifiers [see also Ideal reclifiers) controller schemes

average currenl control, 648-654

current programmed control, 654-656

critical conduction mode, 657-659

feedforward, 650-652

hysteredc control. 65759

nonlinear carrier control, 659-663 modeling of

efficiency and losses, 678-685

low-bandwidth control loop, 668-673

wide-bandwidth average current control loop, 652-654 rms calculations in, 673-678 Low Q approximation, 287-289

Magnetic circuits, 498-501 Magnetic field И, 491-492 Magnetic path length

definition, 497

ferrite core tables, 864-867 Magnetics, 489-586

ac inductor design, 580-583

basic relationships, 491498

copper loss, 42-45. 508, 510-525

core loss, 42, 506-508, 561-562

coupled inductor design, 550-557

ferrite core tables. 864-867

flyback Iransformer design, 557-562

inductor design, 539-562

inductor design, multiple winding, 550-562

magnetic circuits, 498-501

magnetic devices, types of, 525-531 optimizing Ul minimize total los.s, 569-570 optimizing window allocation to minimize copper

loss, 545-550 proximity effeci, 508-525 transformer basics, 146-149, 501-505 Iransformer design, 565-583

Magnetizing current, 147-148, 502-504

Magnett>motive force (MMF) definition, 491-492 magnetic circuit, in, 498499 MMF diagrams, 512-514

Majority carrier devices (see also MOSFET, Schottky diode), 74-75

Matrix converter, 72-73

Meal length per turn [MLT] definition, 543 ferrile core tables, 864-867

Measurement of transfer functions and loop gains [see Experimental techniques)

Middlebrooks extra element theorem (see Extra element theorem)

Minority carrier devices {see also Bipolar junclion transistor. Diode, Gale lurn-off thyristor, Insulated-gale bipolar transistor, MOS-conlrolled thyristor, Silicon controlled rectifier), 74-75

Modulation index, 689-690

MOS-controlled thyristor (MCT), 91-92

MOSFET

body diode, 67-68, 78-79

conduction loss, modeling of, 52-56, 204-213 , 816-819

con.struttion and operation of. 78-81

on resistance, 52-56, 78-81

swilching loss owing lo С , 98-99, 765-768

as synchronous rectifier, 73-74

terminal capacitances, 80-81

lypical characteristics, 80-81

zero-vollage and zero-current swilching of, 721-726,

765-768 Motor drive system, 8-9

Multiplying contfoller (see also Average currenl control, Current programmed control), 648-659

Multi-resonant switch, 784-786

Negative feedback [see also Control system design) effects of, on network transfer functions. 334-337 objectives of. 187,331-334 reduction of disturbances by, 335-337 reduction of sensidvily lo variations in forward gain by, 337

Nonlinear carrier control, 659-663



Nonrainimura-phase zero {лее Right half-plane zero)

Oulpul charatLerislios

oflhe parallel resonani oonverler. 750

of resonani inverters, 727-729

of Ihe Series resonani eonvener, 747-748

Overshoot, 346-347, 348

Parallel resonani eonverler

analysis via sinusoidal approjiiraalion, 7)8-72) dependence of Iransislttr current on load, 730-731 es.ael characlerislics

continuous conduction mode, 748-751

control plane, 751

discontinuous conduction mode, 749-751 ouiput plane, 750

introduction to, 705-706 Permeability Ц

definition, 494495

of free space, Ц, 494

relative, p 495 Phase asymptotes

ol complex poles, 284-285

inverted forms, 278

of real pole, 272-274

of real /еп), 275

of RHP zero, 276 Phase control

of resonant converters, 705

of Ihree-phase rectifiers, 6)7-622

of zero-voltage transition dc-dc converter, 791-794 Phase margin

vs. closed-loop damping facior, 342-346

inpul filler, undamped, effecl on, 390-391

stability (est, 341-342 Poles

complex. Bode plots of, 282-286

the low Q approximation, 287-289

real. Bode plots of, 269-274 Pol core data, 864 Powdered iron, 495, 507

Power facior [see also Total harmonic distortion. Displacement factor. Distortion facior) definition of, 594-598

of bridge recdfier, single phase, 597, 6)0-6)3 of peak deteclton rectifier, 597 of phase-conlro)led reclifier, three phase, 616, 619-620

Power sink elemeni Isee Power source element) Power source elemeni

in averaged switch models

current programmed mode, CCM, 454-457

current programmed mode, DCM, 475-477 discontinuous conduction mode, 414-430 definidon of, 415-416

in ideal reclilier mode), 638-640, 646-647, 650, 666,

668-670, 686 linearization of, 383-384,423424, 457, 668-671 in loss-free resistor model, 416-417, 639-640 properties of, 415-416

in switched-mode regulators, 383-384,455, 665-666 PQ core data, 867 Proximity effecl

Conductor spacing facUjr Г], 5l5

interleaving, effect on, 520-522

layer copper loss, 515-517

Litz wire, effect of, 522

MMF diagrams, 512-514

PWM waveform harmonics, 522-525

simple explanation, 5Q8-512

trans former design procedure, accounting for, 572

winding loss, lolal, 518-520 PSpice {see Simulation) Pulse width modulation (PWM), 4-6

modulator ac model, 253-255

operation of modulator, 253-255

spectrum of PWM waveform, 188-189 Push-pull isolated converters

based on boost converler, 167-168

based on buck converter, 159-160, 441

Walkins-Johnson converler, 167-168

Q facior, 283-286

canonical model, predicted by, 300 closed-loop, vs. phase margin, 342-346 oflhe CCM buck, boost, and buck-boost converters, 300

graphical determination of, 307, 310, 312, 3)4

the low Q approximation, 287-289

vs. overshoot, 346-347

of parallel resonant circuii, 309-3)0

of series resonani circuit, 305-307 Quasi-re.sonanl converters {see also Mu)[i-resonant

switch, Quasi-st]uare-wave switch)

zero-current switching dc-dc full wave, 779-781 half wave, 768-779

zero-voltage .switching dc-Jc, 783-784 Quasi-square-wave converters, 787-790 Quasi-static approximation, 653-654 Quiesceni operaiing point, 190-191, 198,2205

Reactance graph paper {xee Impedance graph paper) Reactive power



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 [ 293 ] 294 295 296 297 298 299 300