Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 [ 37 ] 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

5.1 Origin of ihe Dincominnous Condimiati Mode, and Mode boundary

Fig, 5.3 Buck converter waveforms at tiie boandary between the contiiiunus and discdntiniious cnnduclion modes: (a) inductor current (b) diode cuiTent i (0.

Conducdng devices:



switching ripple peak amplitude is:

(5.2)

The ripple magnitude depends on the applied voltage (V - V), on the inductance L and on the transistor conduction time DT, But it does not depend on the load resistance R. The inductor current ripple magnitude varies with the applied voltages rather than the applied currents.

Suppose now that the load resistance R is increased, so that the dc load current is decreased. The dc component of inductor current / will then decrease, but the ripple magnitude Дг will remain unchanged. If we continue to increase Д, eventually the point is reached where l-Ai, illustrated in Fig. 5.3. It can be seen that the inductor current iiit) and the diode current tp(0 are both zero at the end of the switching period. Yet the load current is positive and nonzero.

What happens if we continue to increase the load resi.stance Л? Tlie diode current cannot be negative; therefore, the diode must become reverse-biased before the end of the switching period. As illustrated in Fig. 5.4, there are now three subintervals during each switching period T. During the first subinterval of lengdi />Г the transistor conducts, and the diode conducts during the second .subinterval of length DjT . At the end of the second subinterval the diode current teaches zero, and for the remainder of the switching period neither the transistor nor the diode conduct. The converter operates in the discontinuous conduction mode.

Figure 5.3 suggests a way to find the boundary between the continuous and discontinuous conduction modes. It can be seen that, for this buck converter example, the diode current is positive over the entire Interval ОТ,. < I < T. provided that / > Hence, the conditions for operation in the continuous and discontinuous conduction modes are:



Fig. 5.4 Buck converter wuveformi in the discotitiiluiiub; conduction mode: {л) indjctor current (f), (b) diude current

Conducting devices:

(b) (dC()

/>di7 tbrCCM l<Ai Гог1Х:М

(5.3)

vifhere / and are found assuming that the converter operates in the continuous conduction irnxle. Insertion of Eqs. (5.1) and (5.2) into Eq. (5.3) yields the follovifing condition for operation in the discontinuous conduction mode:

(5.4)

Simplification leads to

2L RT,

(5.5)

This can also be expressed

К < K,.,ID) for DCM

(5.6)

where



5, / Origin of the Discontiniioiis Condnaion Made, and Made Bamidaiy

Fig, 5,5 Rutk toiivcrter K,,(D) vs. o. Tlie converter operates in CCM when К > K,,. and in DCM when К < K,. ,

1 D

The dimensionless parameter A is a measure of the tendency of a converter to operate in the discontinuous conduction mode. Large values of К lead to continuous mode operation, while small values lead to the discontinuous nitxle for some values of duty cycle. The critical value of Aat the boundary between modes, /i.,.;,(D), is a function of duty cycle, and is equal to iJfor the buck converter.

The critical value К.,,ф) is plotted vs. duty cycle D in Fig. 5.5. An arbitrary choice of A is also illustrated. For the values shown, it can be seen that the converter operates in DCM at low duty cycle, and in CCM at high duty cycle. Figure 5.6 illustrates what happens with heavier loading. The load resistance .fi is reduced in value, such that ffis larger If A is greater than one, then the converter operates in the continuous conduction mode for all duty cycles.

It is natural to express the mode boundary in terms of the load resistance fi, rather than the diraensionless parameter A. Equation (5.6) can be rearranged to directly expose the dependence of the mode boundary on the load resistance:

R < R,rtp) for CCM R > Rcr;,(P} for DCM

(5.7)

where

So the converter enters the discontinuous conduction mode when the load resistance R exceeds the critical value /f.jj. This critical value depends on the inductance, the switching period, and the duty cycle. Note that, since [У < 1, the minimum value of fiif i.T.. Therefore, if Я < Ihen the converter

will operate in the continuous conduction mode for all duty cycles.

These results can be applied to loads that are not pure linear resistors. An effective load resis-

Fig. 5,6 Comparison of К with /, ,(/J), for a larger value of A , Since/C> 1. the converter operates in CCM for all D.




1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 [ 37 ] 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300