Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 [ 38 ] 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

Table 5,1 CCM-DCM mode boundaries for the buek, boost, and buck-boysl eonvertcj s

Converter

min (/i ,)

Buck

Boost

(1-d)

D{1 - Df

Buck-boost (1 - of-

(\-Dyr, 2L

2 Г.

tance R is defined as tlie ratio of the dc output voltage to the dc load current: R = V/1. This effective load resistance is then used in the above equations.

A similar mode boundary analysis can be performed for other converters. The boost converter is analyzed in Section 5.3, while analysis of the buck-boost converter is left as a homework problem. The results are listed in Table 5.1, for the three basic dc-dc converters. In each case, the dimensionless parameter is defined as К - lUKi]., and the mode boundary is given by

K>K jU) or R<R,JP) forCCM <A: (D) or R>R,(P) for DCM

(5.8)

5.2 ANALYSIS t)F THE CONVERSION RATIO M(D, K)

With a few modifications, the same techniques and approximations developed in Chapter 2 for the steady-state analysis of the continuous conduction mode may be applied to the discontinuous conduction mode.

(a) Inductor volt-second balance. The dc component of the voltage applied to an inductor mast be zero:

(5.J)

(b) Capacitor charge balance. The dc component of curreiu applied to a capacilor must be zero:

(,-,) = \-,(,)Л = и <5.I0)

These principles must be Urue for any circuit that operates in steady state, regardless of the operating mode.

(c) The linear ripple approximation. Care must he used when employing the linear ripple approximation in the

discentinttoas coitduction mode.

ti Output capacitor voltage ripple. Regardless of the operatiitg mode, it is required that the output voltage ripple be small. Hence, for a well-designed converter operating in the discontinuous conduction mode, the peak output voltage ripple Av shottid be much smaller in magnitude than the otttpttt vohage dc component V. So the linear ripple approximatioit аррИея to the output voltage waveform:



(5.11)

{ii) tndnaor airrenr ripple. By definition, the inductor current ripple is not small iii the discoiitinaons conduction mode, trdeed, Eq. (5.3) slates that the inductor current ripple Ai is greater in magnitude than the dc component J. So neglecting the inductor current ripple leads to inaccurate results. In other converters, several inductor currents, or a capacitor voltage, may contain large switching ripple whicti should noi be negtected.

The equations necessary for solution of the vtdtage conversion ratio can be obt;uned by invoking volt-second balance for each inducttjr voltage, and charge balance for each capacittjr current, in the network. The switching ripple is ignored in the output capacitor voltage, but the inductor current switching ripple must be accounted for in this buck converter example.

Let us analyze the conversion ratio M = V/V of the buck converter of Eq. (5.1). When the transistor conducts, forO< ( <0Г, the converter circuit reduces to the network of Fig. 5.7(a). The inductor voltage and capacitor current are given by

Vi(f) = V,-KO

(5.12)

By making the linear ripple approximation, to igntjre the output capacitor voltage ripple, one obtains

Fig. 5.7 Buck converter circuits for operation In the (iiscontinuous conduction mode: (a) duruig suhinterval 1, (h) during subiutefval 2, (c) during subinterval 3,




(5.13)

itr) = /,(0-

Note that the inductor currenl ripple has not been ignored.

The diode conducts during subinterval 2, DjTj < < (L\ -i- Щ)Т- The circuit then reduces to Fig. 5.7(b). The inductor voltage and capacitor current are given by

icO-hm--f

By neglecting the ripple in the output capacitor voltage, one obtains

v,(r) = -V

(5.15)

The diode becomes reverse-biased at time T = iD + DyT. The circuit is then as shown in Fig. 5.7(c), with both transistor and diode in the off state. The inductor voltage and inductor current are both zero for the remainder of the switching period (Д; + D-JT < < The networic equations for the third subinterval are given by

y, = 0, =0 icit)i,{t)-

Note that the inductor current is constant and equal to zero during the third subinterval, and therefore the inductor voltage must also be zero in accordance with the relationship \j(t) = Ldif{t)!dt. In practice, parasitic ringing is observed during this subinterval. This ringing occurs owing to the resonant circuit formed by the inductor and the semiconductor device capacitances, and typically has little influence on the converter steady-state properties. Again ignoring the output capacitor voltage ripple, one obtains

Equations (5.13), (5.15), and (5.17) can now be used to plot the inductor voltage waveform as in Fig. 5.S. According to the principle of inductor volt-second balance, the dc component of this waveform must be zero. Since the waveform is rectangular, its dc component (or average value) is easily evaluated:

{.lit)) = V, - V) -H Dj[- f )- Лз(п) = 0 (5.IS)

Solution for the output voltage yields

y~Y 1 (5.19)

The transistor duty cycle D (which coincides with the subinterval 1 duty cycle /J,) is the control input to the converter, and can be considered known. But the subinterval 2 duty cycle is unknown, and hence



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 [ 38 ] 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300