Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 [ 39 ] 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

52 Amhsis of the Omversimi Ratio M(D, K)

Fig. 5,8 Inductor voltage waveform ij(f), buck ciinverter operating in discottnmious conduction mode,

another eqtiation is needed toeliminate and solve for the output voltage V.

The second equation is obtained by use of capacitor charge balance. The connection of the capacitor to it.s adjacent components is detailed in Fig. 5,9. The node equation of thi.s network is

By capacitor charge balance, the dc component of capacitor current must be zero:

(5.20)

(5.21)

Therefore, the dc load current must be .supplied entirely by the other element.s connected to the node. In particular, for the case of the buck converter, the dc component of inductor current must be equal to the dc load current:

(5.22)

So we need to compute the dc component of the inductor current.

Since the inductor current ripple is not small, determination of the inductor current dc component require.s that we examine the current waveform in detail. The inductor current waveform is .sketched in Fig, 5.10. The current begins the .switching period at zero, and increases during the first subinterval with a constant slope, given by the applied voltage divided by the inductance. The peak inductor current ij, IS equal to the constant slope, multiplied by the length of the first subinterval:

V,-V

i,(0,r,) = v = -D,r,

(5.23)

The dc component of the inductor current is again the average value:

(5.24)

Ftg, 5.9 Conncctiov! of ihe oiitpnt capaciuir to adjacent components.




Fig. 5.10 Iruluctorturrent waveform 1,0), buck convuiter iipciatuig in clis-tonliiiuous conduction mode.


The integral, or area under tlie iL(t) ctuve, is the area of the triangle having lieiglit ij and base dimension (D[ + 02)Г,. Use of tlie triangle area formula yields

Substitution of Eqs. (5.23) and (5.25) into Eq. (5.24) ieads to

Finally, by equating this result to the dc load current, according to Eq. (5.22), we obtain

(5,25)

(5.26)

(5.27)

Thus, we have two unknowns, V and D e have two equations. The first equation, Eq. (5.19), was obtained by inductor volt-second balance, while the second equation, Eq. (5,27), was obtamed using capacitor charge balance. Elimination of D from the two equations, and solution for the voltage conversion ratio M(D K)=V/V, yields

t+./1+

where vulid for

(5.2S)

KIURT,

This is the solution of the buck converter operating in discontinuous conduction mode.

The complete buck converter characteristics, including both continuous and discontinuous conduction modes, are therefore



5.3 Boos! Convener Example

Fig. 5.11 Voltage conversion ratio M(D, fT), buck converter.


1+./1+

(5.29)

where the transistor tiiity cycle D is identical to the subinterval 1 duty cycle D, of the above derivation. These characteristics are plotted in Fig. 5.11, for several values of A. It can be seen that the effect olthe discontinuous conduction mode is to cause the output voltage to increase. As К tends to zero (the unloaded case), M tends to unity for all nonzero D. The characteri.stics are continuous, and Eq. (5.28) intersects the CCM characteristic M -Dm the mode boundary.

BOOST CONVERTER EXAMPLE

As a second example, consider the boost converter of Fig, 5.12, Lets determine the boundary between modes, and solve for the conversion ratio in the discontinuous conduction mode. Behavior of the boost converter operating in the continuous conduction mode was analyzed previously, in Section 2,3, and expressions for the inductor current dc component / and ripple peak magnitude Ai, were found.

When the diode conducts, its current is identical to the inductor current As can be seen from Fig. 2.18, the minimum value of the inductor current durmg tlie diode conduction subinterval DT<l<l\Jx (/- Д/,), If this minimum current is positive, then the diode is forward-biased for the entire subinterval < t < 7 , and the converter operates in the continuous conduction mode. So the conditions lor operation of the boost converter in the continuous and discontinuous conduction modes are:



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 [ 39 ] 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300