Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 [ 41 ] 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

5 J Boost Converter Example

Fig. 5.1Й Inductor voltage waveform v,(r), boost converter operaiing in discontinuous conduction mode.

.c = -

[5.Щ

Equations (5.35), (5.37), and (5.39) arc now used to sketch the inductor voltage waveform as in Fig. 5.16. By volt-second balance, this waveform must have zero dc component when the converter operates in steady state. By equating the average value of this ij(f) waveform to zero, one obtains

Solution for the output voltage Vyields

(5.40)

(5,41)

The diode duty cycle is again an unknown, and so a second equation is needed for elimination of before the output voltage V can be found.

We can again use capacitor charge balance to obtain the second equation. The connection of the output capacitor to its adjacent components is detailed in Fig. 5.17. Unlike the buck converter, the diode in the boost converter is connected to the output ntxie. The mxle equation of Fig. 5.17 is

(5,42)

where iify is the diode cutrent. By capacitor chaige balance, the capacitor current iO) must have zero dc component in steady state. Therefore, the diode current dc component {г) tnust be equal to the dc component of the load current:

So we need to sketch the diode current waveforin, and find its dc coinponent.

(5.43)

Fig, 5.17 Connection of the output capacitor to adjacent components In the boost converter.

;f

R 4 v(f)



Fig. 5.1 S Boiisl converter wiivefurms in tijc discontinuous cimductior mnde: (a) inductor current i(r), (b) diode current WO-


The waveforms of the inductor current til) and diode current are illustrated in Fig. 5.IS. The inductor current begins at zero, and iise.4 to a peak value ip). during the first subinterval. This peak value ij is equal to the slope V/ij, multiplied by the length of the first subinterval,/>Г,:

T

(5.44)

The diode conducts during the second subinterval, and the inductor current then decreases to zero, where it reiuains during the third subinterval. The diode current in(f) is identical to the inductor current /(r) during the second subinterval. During the first and third subintervals, the diode is reverse-biased and hence Гд(г) is zero.

The dc component of the diode current, (f), is:

(5.45)

The integral is the area under the ((0 waveform. As illustrated in Fig. 5.18(b), this area is the area of the triangle having peak value i, and base diinension Ол-

jidt)it = iD{r,

(5.46)

Substitution of Eqs. (5.44) and (5.46) into Eq. (5.45) leads to the following expres.sion for the dc coinpo-nent of the diode current:



5.3 Воо.и Coinnrmr Example

By equating this expression to the de load eiiirent as in Eq. (5.43), one obtains the final result

(5.47)

(5.48)

So ntjw we have two unknowns, V atid Dj. We have two equations: Eq. (5.41) obtained via induetor volt-seeond balanee. and Eq. (5,4S) obtained using eapacitor charge balance. Let us now eliminate from this system of equations, and solve for the output voltage V. Solution of Eq. (5.41) for yields

(5.49)

By inserting this result into Eq. (5.48), and rearranging terms, one obtains the following quadratic equation:

Use of the quadratic formula yields

(5,50)

(5.51)

The quadratic equation has two roots: one of the roots of Eq. (5.51) is positive, while the other is negative. We already know that the output voltage of the boost converter should be positive, and indeed, from Eq. (5.41), it can be .seen that V/V must be positive since the duty cycles Bj and are positive. So we should select the positive root:

(5,52)

where К = 2/./ Г,

valid for !<<k, {d)

This is the solution of the boost converter operating in the discontinuous conduction mode.

The complete boost converter characteristics, including both continuous and discontinuous conduction modes, are

1+V 1 +

forA:>A

(5,53)



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 [ 41 ] 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300