Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 [ 56 ] 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

iit) ТЛЛГ

- ouu -r


Fig. rt,34 PuH-bntlgti trunsormeir-istjIijLed boost ctinvertci.

Conducting devices:


Fig* <>ь35 WiLveform.4 oflhe traiisfonnei-lsobted full-bridgt; Ьооа\ t;tiiiveiitf] , CCM.



increases with slope VJL, and eiieigy is transferred from the de source V to inductor L. During the second subinterval, transistors and Q- operate in the off state, so that inductor L is connected via transistors fii and 64 through the transformer and diode to the dc output. The next switching period is similar, except that during subinterval 2, transistors 2; and operate in the off .state, and inductor L is connected via transistors and through the transformer and diode to the dc output. If the transistor off-times and the diode forward drops are identical, then the average transformer voltage is zero, and the net volt-seconds applied to the transformer magnetizing inductance over two switching peritjds is zero.

Application ofthe principle of inductor volt-second balance to the inductor voltage waveform vit) yields

(6.48)

Solution for the conversion ratio M(D) then leads to

(6,4))

This result is similar to the btKJSt converter M[D\ with an added factor of u due to the transformer turns ratio.

The transistors must block the reflected load voltage V/ii - VJD. In practice, additional voltage ( )


R < V

Щ 1

CZtZ R < V

Tl Г

Fig. 636 Pusli-pull isolated converters; (a) based on the bousr converter, (b) based on the Watkins-Johnson convener.



is observed due to ringing associated with the transformer leakage inductance. Because the instatitaneous transistor curretit is limited by inductor L, saturation of the transformer due to small imbalances in the semiconductor forward voltage drops or conduction times is not catastrophic. Indeed, control schemes are known in which the transformer is purposely operated in saturation during subinterval 1 [13, 15].

A push-pull configuration is depicted in Fig. 6.36(a). This configuration requires only two transistors, each of which must block voltage 2V!n. Operatitm is otherwise similar to that of the full-bridge. During subinterval 1, both transistors conduct. Daring subinterval 2, one of the transistors operates in the off state, and energy is transferred from the inductor through the transforiner and one of the diodes to the output. Transistors conduct during subinterval 2 during alternate switching periods, such that transformer volt-second balance is maintained. A similar push-pull version of the Watkins-Johnson converter, converter 6 of Fig. 6.14, is illustrated in Fig. 6.36(b).

6J.6 Isohited Versions of the SEPIC and the Cuk Converter

The artifice used to obtain isolation in the flyback converter can also be applied to the SEPIC and inverse-SEPlC. Referring to Fig. 6.37(a), inductor can be realized using two windings, leading to the isolated SEPIC of Fig. fi.37(b). An equivalent circuit is given in Fig. 6.37(c). It can be seen that the mag-


Fig. 6.37 Obtaining isokition in the SEPIC: (a) basic nonisolated conveiter, (b) isolated SEPIC, (e) with transformer equivalent circuit modef



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 [ 56 ] 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300