Строительный блокнот  Introduction to electronics 

1 2 3 4 5 [ 6 ] 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300



J -----

I 5 L


Fig. 2.5 Tliiee basic converlers iind ihcir dc tonveraion ratios M(D) = VIV: (a) buck, (b) boost, (c) buck-boosi.

Fig, 2.6 Buck coiivciter circuit, wilh the inductor voltage Vjil) and capacitor current iJ(,t) waveforms specificsiiiy idcnti-fieci.

-ТППП-

+ vU) -

poneilt rij,j(0 arising from the incomplete isttemiation of the switching harmonics by the low-pass filter. The magnitude of v,p j,(f)has been exaggerated in Fig. 2.7.

The output voltage switching ripple should be small in any well-designed converter, since the object is to produce a dc output. For example, in a computer power supply having a 3.3 V output, ihe switching ripple is normally required to be less than a few tens of millivolts, or less than 1% of the dc component V. So it is nearly always a gt>od approximation to assume that the magnitude of the switching



2.2 hiducior Voh-Secwd Balance, Capacitor Charge Bakmce. andihe SmaU-Rippk Approximaiim\

Fig. 1.7 Output vokage waveform v{t), ton.sistiiig of dc comininent V and swiictiiiig

ripple v, ,J-l)-

v(l)

Actual waveform

dc component V

ripple is mutli smaller than the dt component:

Therefore, the output voltage v(f) is well approximated by its dc component V, with the small tipple term iri,.,) neglected:

v(0 = V

(2.6)

Tills approximation, known а.ч the sraall-ripple approximation, or the lineiu-ripple approximation, greatly simplifies the analysis of the converter waveforms and is used throughout this book.

Next let us analyze the inductor current waveform. We can find the inductor current by integrating the inductor voltage waveform. With the switch in position 1, the left side of the inductor is connected to the input voltage V, and the circuit reduces to Fig. 2.8(a). The inductor voltage 1,(0 is then given by

(2.7)

As described above, the output voltage ij(0 consists of the dc component F, plus a small ac ripple term v-,jj)J.t). We can make the small ripple approximation here, Eq. (2.6), to replace ij(?) with its dc component V\

(2.S)

So with the switch m position 1, the inductor voltage is essentially constant and equal \.aV~V, as shown in Fig. 2.9. By knowledge of the inductor voltage waveform, the inductor current can be found by use of the definition


(3.9)

+ MO -

a < v(x)

Fig. 2,8 Buck auwmer circuit: (a) while the switch is in position 1, (h) wiiile tlia switch is i[i positioa 2.



Fig. 2,9 ,Slejdy-K(iilt; imlucinr viiliajjc wavtirorni, buirkcuiivetler,

Switch position:

Thus, during the first interval, when i,(f) is approximately (l*, - V), the .slope of the inductor eurreni waveform is

il!,{l) V,(0

dt - L

(2. ID)

which follows by dividing Eq. (1.9) by L, and substituting Eq. (2.8). Since the inciuetor voltage v,(l) i.s essentially constant while the switch is in position 1, the inductor current slope is also essentially constant and the inductor current increa.ses linearly.

Similar arguments apply during the second .subinterval, when the switch is in position 2. The left side of the inductor is then connected to ground, leading to ihe circuit of Fig, 2,8(b). It is important to consistenlly define the polarities of the inductor current and voltage; in particular, the polarity of i,(f) is defined consistently in Figs. 2.7, 2.8(a), and 2.S(b). So the inductor voltage during the second .subinterval is given by

Use of the small ripple approximiition, Eq. (2.6), leads to

(2.11)

(2.12)

So the inductor voltage is also essentially constant while the switch is in position 2, as illustrated in Fig. 2.9. Substitution of Eq. (2.12) into Etj. (2.9) and solution for the slope of the inductor current yields

V L

(2.13)

Hence, during the .second subinterval the inductor current changes with a negative and essentially constant slope.

We can now sketch the inductor current waveform (Fig. 2.10). The inductor current begins at some initial value /,(0). During the first .subinterval, with the .switch in position 1, the inductor current increases with the slope given in Eq. (2.10). At time = >Гл the switch changes to position 2. The current then decreases with the constant slope given by Eq. (2.13). At time t- 7j, the switch changes back to

Fig. 2.10 Sioady-bLEitt; induLUH- cunetu waveform, I

tmck ioiivcrtcr. 1(0)




1 2 3 4 5 [ 6 ] 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300