Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 [ 65 ] 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

с Ф R k viO v/t) Q i с ф я i v(r)

(a) (b)

Fig. 7.8 Buct-boo.st converter circuit; (a) when the switch is in position 1, (h) when the switch is itr posititMi 2.

(7.7)

(7.8)

Hence, during the first subinterval, the inductor current j(/) and the capacitor voltage ifr) change with the essentially constant slopes given by Eqs. (7.7) and (7.8). With the switch in position 2, the circuit of Fig. 7.8(b) is obtained. Its inductor voltage and capacitor current are:

(,) = C = -i(/)- Use ofthe small-ripple approximation, to replace ((r) and v(f) with their averaged values, yields

,(r) = C.-(i(r)),-

t))r.

(7.У) (7.10)

(7.11) (7.12)

During the second subinterval, the inductor current and capacitor voltage change with the essentially constant slopes given by Eqs. (7.11) and (7.12).

7.2.1 Averaging the Inductor Waielorms

The inductor voltage and current waveforms are sketched in Fig. 7.9. The low-frequency average of the inductor voltage is found by evaluation of Eq. (7.3)-the inductor voltage during the first and second subintervals, given by Eqs. (7.7) and (7.11), are averaged:

(v,(f))=J] \,(T)dT=rf(o (vfi)) + di,) (v(o), o.m

where d(j) = -(,1). The right-hand side [)f Eq. (7.13) contains no switching harmonics, and models



..........Ж- T /

<<0)

( <>)r

Fif;. 7.9 Buck-boost converter witveforms: (a) inductor voitage, (b) inductor currenl.

only the low-frequency components of the indnctor voltage waveform. Insertion of this equation into Eq. (7.2) leads to

diiit)).,.

(7.14)

This equation describes how the low-frequency components of the inductor current vary with time.

7,2,2 DisciLSsiun of the Averaging Approximation

In steady-state, die actual inductor current waveform i(t) is periodic with period equal to the switching period T,. i(t + Г,) = i{t). During transients, there is a net change in ((f) over one switching period. This net change in inductor current is correctly predicted by use of the average inductor voltage. We can show that this is true, based on the inductor equation

Divide by L, and integrate both sides from t to (-i- T:

Cms:

Viii)dT:

(7.15)

(7.1щ

The left-hand side of Eq. (7.16) is iit + - iit), while the right-hand side can be expressed in terms of the definition nf (i;(OX;. Eq. (7.3), by multiplying and dividing by obtain

H, + T,)-iit)i-T,{v,it})j.

(7.17)

The left-hand side of Eq. (7.17) is the net change in inductor current over one complete switching period. Equation (7.17) states that this change is exactly equal to the switching period multiplied by the aver-



age slope {v(t)y./L.

Equation (7.17) ean be rearranged to obtain

i(/ + r)-i(f)

Let us now find the derivative of {i(t)\j d{i{i))

J-. d di

i(< + T,) - iji)

~~T,-

Substitution ofEq. (7.19) into (7.18) leads to

(7.18)

(7.19)

(7.20)

which c[)iucides with Eq. (7.2).

It us next compute how the inductor current changes over one switching period in nnr buck-boo.st example. The inductor current waveform is sketched in Fig. 7.9(b). Assume that the inductor current begins at some arbitrary value i(0). During the first subinterval, the inductor current changes with the essentially constant value given by Eq. (7.7). The value at the end ofthe first subinterval is

iidT,) =

!(0)

(7.21)

(final value) = (inidal value) + (length of interval) (average slope)

During the secotid subinterval. the inductor curretit chatiges with the essentially cotistatit value given by Eq. (7.11). Hence, the value at the end ofthe .second subinterval is

(7,22)

(final value) = (mitial value) + (length of interval) (average .sk)pe) By substitution of Eq. (7.21) intt) Eq. (7.22), we can express i(TJ in terms of ((0),

;(T;) = i(0) +J

i(f){v,(0)+0(v(t))r

(7.23)

Equations (7.21) to (7.23) are illustrated in Fig. 7.10, Equation (7.23) expresses the final value i(Tj directiy in terms of / (0). without the intermediate step of calculating r(D7). This equation can be iiiter-p-eted in the same manner as Eqs, (7.21) and (7,22): the final value i(TJ is equal to the initial value ((0), plus the letigth ofthe interval T,. multiplied by the average slope (i((r)).yL. But tiote that the interval length is chosen to coincide with the switching period, such that the switching ripple is effectively



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 [ 65 ] 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300