Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 [ 73 ] 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

0= ax + BU V = CX + EU

where the averaged matrices are

A = DA, +DA,

С = 0С, + яс2

The eqtiilibrium dc components are

X = equilibrium (dc) stiile vector

U = e4uilibrium(di;) input ve (7.94)

Y = equili brium (dc) output vettor D = equilibrium (dc) duty cycle

Quantitiesdefined in Eq. (7.94) represent the equilibrium values ofthe averaged vectors. Equation (7.92) can be solved to find the equilibrium state and output vectors:

7* ° ,

The state equations of the small-signal ac model are

к = as(f) + B0(/) + (a , - л i) x + [b. - b,j и j <?{0 y{r) = cm + E0{/) + J(C, - Cj) x + (e. - Ej) uj j(0

(7.96)

The quantities u(t), J(f), and c/(r) in Eq. (7.96) are small ac variations about the equilibrium solution,

or quiescent operating point, defined by Eqs. (7.92) to (7.95).

So if we can write the converter state equations, Eqs. (7.90) and (7.91), then we can always find the averaged dc and small-signal ac models, by eva.luation of Eqs. (7.92) to (7.96).

7.3.3 Dicussiun of the State-Space Averaging Result

As in Sections 7.1 and 7.2, the low-frequency components ofthe inductor currents and capacitt>r voltages are inodeled by averaging over an interval of length T. Hence, we can define the average ofthe state vector as

that describes the converter in equilihrium is

a v d¥1

(7.92)



The Inw-Frcquency components of the input and output vectors are modeled in a similar manner. By averaging the inductor voltages and capacitor currents, one then obtains the following low-frequency state equation:

(7.98)

This result is equivalent to Eq. (7.2).

For example, let us consider how the elements of the state vector x(r) change over one switching period. During the first siihinterval, with the switches in position 1, the converter state equations are given hy Eq. (7.90). Therefore, the elements of x(/) change with the slopes K (AX(r) + BjU(r)), ff we make the small ripple approximation, that x(f) and u(f) do not change much over one switching period, then the slopes are essentially constant and are approximately equal to

A.{:t(;)) + B,(uC0),

(7,99)

This assumption coincides with the requirements for small switching ripple in all eletnents nf x(r) and that variations in u(f) be slow compared to the switching frequency. If we assume that the state vector is initially equal to x(0), then we can write

(7.100)

final inldal interval value value length

ilope

Similar arguments apply during the second subinterval. With the switch in position 2, the state equations are given by Eq. (7.91). With the assumption of small ripple during this subinterval, the state vector now changes with slope

Aj{x(()), + B, {u[t)) The state vector at the end of the switching period is

x(7-,) = x(rfr,) + {d%) K- [Aj (x(0),-bBj{u(0),

final initial interval value value length

Slope

Substitution of Eq. (7.100) into Eq. (7.102) allows us to determine х(7) in terms of x(t)):

х(7-,) = х(0) + 7Д-

Л, {xO)) + B, {ti(/))j JT.K- A, {x(0),+ Bj {u(())

(7.101)

(7.102)

(7.103)

Upon collecting terms, one obtains



73 Siaie-Space Агегащ

xCO)


(rfA, + d-A i) (x)+ (Л, + В2) (u)

Fig. 7,29 ilovi an element of the state vector, and its average, evolve over one switching period.

C,(x(0), + E,{ (/)),

0 л; г, r

Fig. 7.JO Averaging an element of the output vector y(r).

Ti[TJ = xCO) + 7:,K [d(r)A, + dXt)\i] {xO))., + r,K- [</C()B, + d(OBi} {u(0) С-*)

Next, we approximate the derivative of(x(()), using the net change over one switching period:

( W)., х(Г.)х(0) (7,105)

Suhstitution of Eq. (7.104) into (7.105) leads to

К y = ((J(0 л, + di,) Aj) (x(/)) + [d{t) В, + rf(t) Bj] (u(()),.

(7.106)

which is identical to Eq. (7.99). This is the basic averaged model which describes the convertsr dynamics. It is nonlinear because the control inptit 40multiplied by (x(t)).. and (u(t))r,-Variation of atypical element of x(r) and its average are illustrated in Fig, 7,29,

It is also desired to find the low-frequency components ofthe output vector y(f) hy averaging. The vector y(f) is described by Eq. (7.90) for the first subinterval, and by Eq. (7.91) for the second sub-interval. Hence, the elements of y(f) may be discontinuous at the switching transitions, as illustrated in Fig. 7.30. We can again remove the switching harmonics by averaging over one switching period; the



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 [ 73 ] 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300