Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 [ 74 ] 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

result is

{y{t))j =(/(0fc,{x(l))r +E,(u(0)] + rfi;t)(Cj(x(t)) 1-E,{ (0) \ (7.107)

Rearrangement of terra.s yields

This is again a nonlinear equation.

The averaged state equations, (7,106) and (7.108), are oolleeted below:

d{i) A. + dV) A,] (51(0)+ [dit) В, + d(t) Bj] {11(f))

{m)r{m c, + d\t) Ci) {x(o)j./((J(OE,+d(t) Ej) (uo)).,.

(7.108)

(7Л09)

The next step is the linearization of these equations about a quiescent operating point, to construct a small-signal ac model. When dc inputs d(t) = D and u(() = U are applied, converter operates in equilibrium when the derivatives of all of the elements of {х(/)} are zero. Hence, by setting the derivative of (x(f))jj to zero in Eq. (7.109), we can define the converter quiescent operating point as the solution of

0=AX+BU Y = CX + RU

(7.110)

where definitions (7.93) and (7.94) have been used. We now perturb and linearize the converter waveforms about this quiescent operating point:

(s(0)r=X.Hi(O (ii(0)=U + O(0

d{t) = D + d(r) d\t) = a-S(,t)

(7.111)

Here, U(() and d{t) are small ac variations in the input vector and duty ratio. The vectors x(0 and y(f) are the resulting small ac variations in the state and output vectors. We must assume that these ac variations are much smaller than the quiescent values. In other words.

Xls.K(0 111-*№)

Here, к X ii denotes a norm of the vector x.

Substitution DfEq. (7.11 1) into Eq. (7.109) yields

(7.112)



ri(X+ S(f))

Л+ d(l}]A , 4 (D-(/(f)] Л J (X+ (f)) D-K/(o)Bi + (D-d(/))lij (u+0(f))

+ [D+dU)]E, + {Ly--thn]E, [U+u(0) The derivative dX/rfr is zero. By eoUecting terras, one obtains

КхЩ = (aX + BU]+\S<t) + Ba(f) + [A,-Aj)X + (Bi-B3)uy(/)

first-order EC dc terms first-order ac (ernrs

+ (a 1 - A i)x(r)i(0 + (Bi - Bi)a(f)

second-order nonlinear terras

(7,113)

(7,114)

{Y*m] = (CX + EUj + cm + Kfl(0 + {[C,- C,)X - (e, -E,)uy(f)

dc + 1 order ac de terms first-order ae terms

+ (C, - Сз)х(/)J(f) + (E, - Ej]u(/V(t) v,

second-order nonlinear terms

Sinte the dt terms satisfy Eq. (7.110), they drop ont of Eq. (7.114). Also, if the stnali-signal assumption (7.112) is satisfied, then the second-order nonlinear terms of Eq. (7.114) are small in magnitude compared to the first-order ac terms. We can therefore neglect the nonlinear terms, to obtain the following linearized ac model:

. ffS(0 dt

y(() = Cx(/)-(-Efl(/) +

К = Ax(() -r m/} + (A, - A i] X + (в, - в J uU(f)

(C,-C,)X + (E,-E,] Vthi)

(7.115)

This is the desired result, which coincides with Eq. (7.95).

7.3.4 Example: State-Space Averaging uf a Nonideal Buck-Boost Converter

Let lis apply the state-space averaging methtxl to model the buck-btx)st converter of Fig. 7.31. We will model the conduction loss of MOSFET byon-resistance Л , and the forward voltage drop of diode




Fig, 7,31 Cuck-boost converter example.

i>] by an independent voltage source ofvalue V. It is desired to obtain a complete equivalent circuit, which models both the input port and the output port of the converter,

The independent states of the converter ate the inductor current ;{/) and the capacitor voltage \>(f). Therefore, we should define the state vector x(r) as

\{!}--

v(!)

(7.116)

The input voltage vU) is an independent source which should be placed in the input vector u(r). hi addition, we have chosen to model the diode forward voltage drop with an independent voltage source of value Vq. So this voltage source should also be included m the input vector ii(r). Therefore, let us define the input vector as

u(f) =

(7.117)

To model the converter input port, we need to rind the converter input current ((;). To calculate this dependent current, it should be included in the output vector y(r). Therefore, let us choose to define y{l) as

y(r) =

i,il)

(7.118)

Note that it isnt necessary to include the output voltage v{t] in the output vector y((), since v{t) is already included in the state vector x(r).

Next, let us write the state equations for each subinterval. When the switch is in position 1, the converter circuit of Fig. 7.32(a) is obtained. The inductor voltage, capacitor current, aud converter input current ate

/. = v (0-i(O/t,

clvit) v(()

(7,119)

dt ~ R

i,it) = Hl)

These equations can be written in the following state-space form:



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 [ 74 ] 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300