Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 [ 75 ] 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

Fig. 7,32 Bucfc-bonst totivertcr drcuit: (я) during subiiiterval J, (b) during subinterval 2,

d\(t) dt

y(f)

V{f)

+ 10 0 0

vv(0

(0 \\t)

\(t)

(7,:2C)

So we have identified the state equation matrice.s A B Сц and E,.

With the switch in position 2, the converter circuit of Fig. 7.32(b) is obtained. Forthis subinterval, the inductor voltage, capacitor current, and converter input current are given by

dl R i,it) = 0

When written in state-space form, these equations become

(7.121)



0 1

dm dt

A; [00]

+ 0-1

Bj, Cj, and Cj.

(7.122)

The next step is to evaluate the state-space averaged equilibriutn equations (7.У2) to (7.94). The aveiaged tnatrix A is

a = dai +t>aj = d

In asirailar manner, the averaged matrices B, C, and E are evaluated, vi-ith the follovi-ing results:

- OR ., D

(7.123)

В = OB J -i- /TBj = с = C-C, + OCj =

The dc state equations (7,92) therefore become

-Off D

7j =

U>0

D -1У 0 0

D -D

0 0

(7.124)

(7.125)

Evaluation ofEq. (7.95) leads to the follovifing solution for the equilibrium state and output vectors:

D 1

d-/f DR

D ff-R DR

(7.126)

ff R

Alternatively, the steady-state equivalent circuit of Fig. 7.33 can be constructed as usual from



7.3 Stale-SpiiceAveraging

1 : D

I-W-

Ф II


Fig. 7J3 Dc circiiii model for the buck-boost converter example, equivalent to Eq. (7.125),

Eq, (7,125). The top row of Eq. (7.125) could have been obtained by application of the principle of inductor volt-second balance to the inductor voltage waveform. The second row of Eq. (7.125) could have been obtained by application of the principle of capacitor charge balance to the capacitor current waveform. The i,(0 equation expresses the dc component ofthe converter input current. By reconstructing circuits that are equivalent to these three equations, the dc model of Fig. 7.33 is obtained.

The small-signal mtxiel is found by evaluation of Eq. (7.95). The vector coefficients of /(/) in Eq. (7.95) are

(a,-a,)x + (b,-Bj]u = (c,-Cj)x + (e,-f ]u = [;J

The small-signal ac state equations (7.95) therefore become

(7.J27)

D 1

D a

(1 0

dif)

+ 00

VjtO 0

(7.128)

Note that, smce the diode forward voltage drop is modeled as the constant value Уд, there are no ac variations iti this soiuce, aiid vit) equals zero. Again, a circuit model equivalent to Eq. (7.128) can be constructed, in the usual manner. When written in scalar form, Eq. (7.126) becomes

1Ш = [У vU) - D tit) + D v(f) + [ V, - V - ;, , + Vj rf(0

C = -DHt)-Mit) Lit)D>(t) + ld\l)

(7.129)

Circuits corresponding to these equations arc listed in Fig. 7.34. These circuits can be combined into the complete small-signal ac equivalent circuit model of Fig. 7.35.



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 [ 75 ] 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300