Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 [ 77 ] 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

ViCf)

Vci + Vci

1Л+Ч.2

..........................

.............

4i + ci

г-itii!

Fifi. 7.38 Terminal switch network waveforms in the CCM SEP[C.

currents can be taken as indepemient inputs to the switch network. The remaining two voltages and/or currents are viewed as dependent outputs of the switch network. In general, the choice of independent inputs is arbitrary, as long as the inputs can indeed be independent in the given converter circint. For CCM operation, one can chtxtse one terminal current and one terminal voltage as the independent inputs. Let us select jj(t) and V2(() as the switch network independent inputs. In addition, the duty cycle d{<} is the independent control input.

In Fig. 7.39(b), the ports of the switch network are replaced by dependent voltage and current sources. The waveforms of these dependent sources are defined to be identical to the actual dependent outputs Vf(f) and JjCf) given in Fig. 7.3S. Since all waveforms in Fig. 7.39(b) match the waveforms of Figs. 7.39(a) and 7.3Я, the circuits are electrically equivalent. So far, no approximations have been made.

7.4.2 Circuit Averaging

The next step is determination of the average values of the switch network terminal waveforms in terms of the converter state vatiable.s (inductor currents and capacitor voltages) and the converter independent inputs (such as the input voltage and the transistor duty cycle). The basic assumption is made that the natural time constants of the converter network arc much longer that the switching period T-This assumption coincides with the recjuirement for small switching ripple. One may average the waveforms over a titne interval which is short cornpared to the systern natural titne constants, without significantly altering the system response. Hence, when the basic assumption is satisfied, it is a gotxi approximation to average the converter waveforms over the switching period Ту The residting averaged model predicts the low-frequency behavior ofthe system, while neglecting the high-frequency switching harmonics. In the SEPIC example, by use of the usual small ripple approximation, the average values of the switch network terminal waveforms of Fig. 7.38 can be expressed in terms ofthe independent inputs and the state variables as follows:



AC Equivalent Circuit Modeiing

( 1(0

Switch network \

v,(/)

lv,(f)

Switch network i

Averaged switch netvorh

Fig. 7.39 Derivation of lhe averaged switch modci for lhe CCM SEPIC: (a) switcli network; fb) switch network where the switcVies nie replaced with rtepentlciit aimrcen whose waveforms match tlie switch terminal dependent wavcfomis; (c) large-signal, nonlinear averaged switch inodcl obtained by averaging the .switch network termitial waveforms in (b); (й) tk: and ac small-signal averaged switch model.



(7,130)

(7,131)

r3(()) = rft/)j{rc,(0), + (v (0)J

(7,132)

(7,133)

We have selected (iiW)j;. and ((O) as the switch network independent inputs. The dependent outptits ofthe averaged switch network are then IWJtj (0)г,- The next step is to express, if possible, the switch network dependent outputs {(2{/>);г and {*(f))r, as functions lo/e/y of the switch network independent inputs (((0)j;> (*i(0)7:,> and the control input d(r). In this step, the averaged switch outputs should not be written as functions of other converter signals such as (v(t)}j-y (ci(0}r cCO),. (i,())7;, (ii2(i)>,, etc.

We can use Eqs. (7.131) and (7.132) to write

d{l)

(7.134)

(7,135)

Substitution of these expressions into Eqs. (7.130) and (7.133) leads to

(7,136)

(7.137)

The averaged equivalent circuit for the switch network, that conesponds to Ec]s. (7.136) and (7.137), is illustrated in Fig. 7.39(c). Upon completing the averaging step, the switching harmonics have been removed from all converter waveforms, leaving only the dc and low-frequency ac components. This large-signal, nonlinear, time-invariant model is valid for frequencies sufficiently less than the switching freqtiency. Averaging the waveforms of Fig. 7.38 modifies oidy the switch network; the remainder of the converter circuit is unchanged. Therefore, the averaged circuit model of the converter is obtained simply by replacing the switch network with the averaged switch model. The switch network of Fig. 7.39(a) can be identified in any two-switch conveiter. such as buck, boost, buck-boost, SEPIC, or Cuk, If the converter operates in continuous conduction mode, the derivation of the averaged switch model follows the same steps, and the result shown in Fig. 7.39(c) is the same as in the SEPIC example. This means that the model of Fig. 7.39(c) can be used as a general large-signal averaged switch model for all two-switch converters operating in CCM.



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 [ 77 ] 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300