Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 [ 78 ] 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

7.4 J Perturbation and Linearization

The model of Fig. 7.39(c) is nonlinear, because the dependent generators given by Eqs. (7.136) and (7.137) are nonlinear functions of d(t), {iiit)), and Toconstruct a small-signal ac model, we per-

turb and linearize Eqs. (7.136) and (7.137) in the usual fashion. Let

rf(/) = D-K/(/)

{;i(/)}j. =/,+ri(() (7.13S)

(7.139)

With these substitutions, Eq. (7.136) becomes

It is desired to solve for the dependent quantity V, + v. Equation (7.139) can be manipulated as follows:

The terms (7(f)i3(() and £Г(/)0(0 are nonlinear, and are small in magnitude provided that the ac variations are much smaller than the quiescent values [as in Eq. (7.32)]. When the small-signal assumption is satisfied, these terms can be neglected. Upon eliminating the nonlinear terms and solving for the switch network dependent output + Vj, we obtain

(7.141)

The term iV,/DD)J(t) is driven by the control input d, and hence can be represented by an independent voltage source as in Fig. 7.40. The temi (DlDXV + VjW) is equal to the constant value (D/D) niidtiplied by the port 2 independent voltage (V2+ vU)}. This term is represented by a dependent voltage source in Fig. 7.40. This dependent source will become the primary winding of an ideal transformer.

In a similar manner, substitution of the relationships (7.138) into Eq. (7.137) leads to:

Fig. 7.40 Linearization of the dependent voltage source.

(0 + 4/, + ,%) = [D-J)(/, + r*,)

(7.142)

The terms i, (Ыа) and titit) are nonlinear, and can be neglected when the small-signal assumption is satisfied. Elimination of the nonlinear terms, and solution for/ -I- Г, yields:



(7.143)


Fig. 7.41 Liriearizaiioi! of [he dependent currcnl source.

The term (/j/DD)({t) is driven by the control inptit d(t), and is represented by an independent current source in Fig. 7.41. The term (DlDXi + (0) is dependent on the port 1 current (/ + t(()). This term is modeled by a dependent current source in Fig. 7.41; this source will become the secondary winding of an ideal transformer. Equations (7,141) and (7.143) describe the averaged switch network model of Fig. 7.39(d). Note that the model contains both dc and small-signal ac terms: one equivalent circuit is used for both the dc and the small-signal ac models. The transformer symbol ctm-tains both a solid line (indicating that it is an ideal transformer capable of passing dc voltages and currents) and a sinusoidal line (which indicates that small-signal ac variations are modeled). The averaged switch model of Fig. 7.39(d) reveals that the switch network performs the functions of: (i) transformation of dc and small-signal ac voltage and current levels according to the D:D conversion ratio, and (ii) introduction of ac voltage and current variations into the convertercircuit, driven by the control input d{t). When this model is inserted into Fig. 7.37, the dc and small-signal ac SEPIC model of Fig. 7.42 is obtained. This model can now be solved to determine the steady-state voltages and currents as well as the small-signal convertertransfer functions.

The switch network of Fig. 7.39(a) can be identified in all two-switch converters, including buck, boost, SEPIC, Cuk, etc. As illustrated Fig. 7.43, a complete averaged circuit model ofthe converter can be constructed simply by replacing the switch network with the averaged switch model. For exam-

D :D


Fig. 7,42 A dc and i;mall-signal ae averaged circuit model of the CCM iJEPIC.



Power inpttt

Ttme-imariant network containing converter reactive eletnents

-1ППГ

v,(0 \

network

vi(f)

cycle

Load

R < v(0

Power input

Time-invariant network containing converter reactive eletnents

ТППР

i i, + h

: V,

: 2 2 +

Averaged switch network I dU)

Duty cycle

Load

Fig. 7,43 С or к true I ion of lui avyraetl circuil model for a Iwo-swiLdi totwerrer орегл!! !; in CCM: (a) lite converter circuit willi (he general Iwu-swiitti [iclwurk identified; (b) dc and ac .smuli-sigiial averaged circuit model obtained by replacing tlie .switch iielwork with ihc average;*! rnndof



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 [ 78 ] 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300