Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 [ 80 ] 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

(() Г

v,(0 i

,(0 !

v,{0 +

Switch network

<i()>. ...........----------

d\t){vMT

Averaged switch network

С: 1

1 Averaged switch network \

Flj . й Dciriviition (if the averaged switch model for llie CCM bt>osi of Hig. 7.45: (a) swjtcli network; (b) .switcli network wheie tho swicclies are replaced by depeiidetit sources whose waveforms match (he switch terminal waveforms; (c) large-signal, nonlineai- averaged swiich model obtained by averaging the switch network lerminal waveforms; (rt) dc and ac small-signal averaged switch network model.




R <v

Fig. 7.47 Dc and small-signil at averaged circuit inodel of the boost converter.

The tenn lJ(t} is driven by the control input J(l), and is represented by an independent current source. The tenn D(l + i(fi) is dependent on the inductor current (/+ Ht)). This temi is modeled by a dependent current source; this source will become the secondary winding of an ide;il transforiner.

Upon elimination of the nonlinear term.s, and replacement of the dependent generators with an ideal !УЛ transfonner, the combined dc and small-signal ac averaged switch model of Fig. 7.46(d) is obtained. Figure 7.47 shows the complete averaged circuit inodel of the boost converter.

It is interesting to compare the models of Fig. 7.44(b) and Fig. 7.47. The two averaged circuit mtxJels of the boost converter are equivalent-they result in the same steady-state solution, and the same converter transfer functions. However, since both ports ofthe switch networli in Fig. 7.45(a) share the same reference ground, the resulting averaged circuit model in Fig. 7.47 is easier to solve, and gives better physical insight into steady-state operation and dynamics ofthe boost converter. The circuit imxJel of Fig. 7.47 reveals that the switch network performs the functions of: (i) transformation of dc and small-signal ac voltage and current levels according to the D:l conversion ratio, and (ii) introduction of ac voltage and current variations into the converter circuit, driven by the control input d{t). The model of Fig. 7.47 obtained using the circuit averaging approach is identical to the model of Fig. 7.17(b) obtained using the basic ac modeling technique of Section 7.2.

Next, we consider the CCM buck converter of Fig. 7.48, where the switch network ports are defined to share a common ground terminal. The derivation of the corresponding averaged switch nuxJel follows the same steps as in the SEPIC and the boost examples. Let us select V(0 and ijU) as the independent terminal variables ofthe two-port switch network, since these quantities coincide with the applied converter input voltage v(t) and the inductor current ((r), respectively. We then need to express the averaged dependent terminal waveforms snd {vj(0)jj as functions ofthe control input (7(0 and

of (v(t)}j. and (ijCO),-- Upon averaging the waveforms of Fig. 7.48(b), one obtains

{vj{0}, = f/(0(vi(0},.

(7. ISO)

Perturbation and linearizadon of Eq. (7.150) then leads to

/i + f,(r)=D(/,+;,(r)) + /,(/)

(7.151)

An equivalent circuit corresponding to Eq. (7.151) is illustrated in Fig. 7.49(.a). Replacement ofthe




R 4 v(()

(,{0

Fig, 7,48 Buck convener example: (a) convener circuit, (b) swiich waveforms.


/, + Г,

1 :D

o

Averaged switch networli

Fig. 7.49 Avcrigod switch modcJtiig, buck converter example: (a) tic and small-signal ac avciaged switch model; (b) Averaged circuit model of the buck converiei obtaitied by replacement of the swiich network by the averaged switch model.



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 [ 80 ] 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300