Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 [ 82 ] 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

15 V

Switch network

h 2

15цН

-I- ?

50 hF

20 n

<b)

Averaged switch model dit): d(t)

d(t)

L, gl5nH I

50 nF

20 a

Fig. 7.S3 Buck-boost converter example: (a) converter circuit; (b) averaged circuit model of tlte converter.

obtained from the switching circuit. Simulations of averaged circuit models can be u.sed to predict converter .steady-state aud dynamic responses, as well as converter losses and efficiency.

7.4.A Example: Averaged Switcli Modeling uf Switcliing Losses

Switching los.ses can also be modeled via averaged switch modeling. As an example, consider again the CCM buck convetter of Fig. 7.48(a). Let us suppose that the tratisistor is ideal, and that the diode exhibits reverse recovery described in Section 4.3.2. The simplified switch waveforms are shown in Fig. 7.55. Initially, the diode conducts the inductor current and the transistor is in the off state. When the transistor turns oil, a negative current Hows through the diode so that the transistor current i, exceeds the inductor current. The time it takes to remove the charge stored within the diode is the reverse recovery time t.



Waveform obtained by simubtion of the averaged model

, Waveform obtained by simulaiion of the switching circuit model



Waveform obtained by simulation of Ihe averaged model

Waveform obtained by simulation of the switching circuit model

0.2 rm

0.4 ms

O.G ms (

0.8 ms

t nts

1.2 ms

1.2 ms

Fig. 7,S4 Waveforms obtained by simulatioji of the switching convertei circuit shown in big, 7.53(a) and by simulation uf the averaged circuit model of Fig. 7.53(b)

Area


Fic> 7.55 Switch wavefonns, buck converter switching loss example,



AC Equivakm Circui! Modeling

Г -j

Fig. 7.S6 Large-signal averaged switcli model for the buck converter switching kiss example.

It is assumed that the diode is snappy, so that the voltage drop across the diode remains small during the reverse recovery time, After the diode reverse recovery is completed, the diode turns off, and the voltage V.J across the diode qtiicklyjninps to the input voltage = v. For this simple example, conduction losses and Other switching losses are neglected.

Let us select V(0 and /(O as the independent terminal variables of the two-port switch network, and derive expressions for the averaged dependent terminal waveforms ((\(0)r. and (vjO)), The average value of ((() is equal to the area under the lj(0 waveform, divided by the switching period

(7.159)

The quantity dij) is the effective transistor duty cycle, defined in Fig. 7.55 as the transistoron-time minus the reverse recovery time, divided by the switching period. The average value of VjCO is equal to:

{v,(0)., = rf(v,(r))

(7.160)

Equations (7.159) and (7.160) constitute the averaged terminal relations of the switch network. An equivalent circuit corresponding to these relationships is constructed in Fig. 7.5(i, The generators that depend on the effective transistor duty cycle d{t) are combined into an ideal transformer. To complete the model, the recovered charge and the reverse recovery time (, can be expressed as functions of the current {iit)) 120]. This is a large-signal averaged switch tnodel, which accounts for the switching loss of the idealized waveforms of Fig. 7.55. If desired, this model can be perturbed and linearized in the usual manner, to obtain a small-signal ac switch model.

The model of Fig. 7.5Й has the following physical interpretation. The transistor operates with the effective duty cycle d{t). This is the turns ratio of the ideal dc transformer, which models the first-order switch property of lossless transfer of power from the switch input to the switch output port. The additional ctirrent generators model the switching loss. Note that both generators consume power. The total switching loss is:

(7.161)

These generators also correctly model how the sw itching loss increases the average switch input current.



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 [ 82 ] 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300