Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 [ 84 ] 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

Fig. 7.58((]). This model predicts that the small-signal control-to-out:put transfer function is

(7Л67)

This transfer function is found hy setting the 0(s) variations to zero, and solving for the dependence of C(i) on c?(j). Figure 7.5S(d) is the complete canonical circuit, which can model any PWM CCM dc-dc converter.

7J.2 Example: ManipulatJon of the Buck-Boost Converter Model into Cimonical Form

To illustrate the steps in the derivation of the canonical circuit model, let us manipulate the equivalent circuit of the btick-boost converter into canonical form. A small-signal ac equivalent circuit for the buck-boost converter is derived in Section 7.2. The result, Fig. 7.16(b), is reproduced in Fig. 7.59. To manipulate this network into canonical form, it is necessary to push all of the independent d{T) generators to the left, while pushing the inductor to the right and combining the transformers,

The (,V - V)d(l) voltage source is in series with the inductor, and hence the positions of these two elements can be interchanged. In Fig. 7.60(a), the voltage source is placed on the primary side of the l.-Dideal transformer; this requires dividing by the effective turns ratioD. The otitput-side/<f(0 current source has also been moved to the primary side of the /):[ transformer. This requires mtiltiplyingby the turns ratio l/D, The polarity is also reversed, in accordance with the polarities of the D.\ transformer windings.

Next, we need to move the ld{tyD current source to the left of the inductor. This can be done using the artifice illustrated in Fig. 7.60(b). The ground connection of the current source is broken, and the source is connected to node Л instead. A second, identical, current sotirce is connected from node A to ground. The second source causes the current flowing into node A to be unchanged, such that the node equations of Figs. 7.60(a) and 7.60(b) are identical.

In Fig. 7.60(c), the parallel combination of the inductor and current source is converted into Thevenin equivalent form. The series combination of an inductor and voltage source are obtained.

In Fig. 7.60(d), the ldit)/U current source is pushed to the primary .side of the V.D transfortner. The magnitude of the current sotirce is multiplied by the turns ratio D. In addition, the current source is pushed through the (V, - V)dityD voltage source, using the previously described artifice. The ground connection of the source is moved to node S, and an identical source is connected from node В to ground such that the circuit node equations are unchanged.

1 : D

GD: 1


Fig. 7.59 Small-signal ac model of tbe buck-boost converter, before nianipubiiott into canonical form.



V.-V


T f 1 T ж f 1

V.-V

St/ J

с ±Z VtU)k R

1:D л D:l

тллр

Fig. 7.60 Steps in the tiianipulation of the buck-boost ac inodel into canonical form.




ZZ. V + v(i) < R

Fig. 7.61 Ttie buck-boost conveiter nunlel, in canonical lorm.

Figure 7.6] is the final form of the model. The iniiuctor is moveti to the seconiiary side of the D: 1 transfonner, by multiplying by the square of the turns ratio as shown. The sLl3(tyD voltage source is moved to the primary side of the 1 :Z) transformer, by dividing by the turns ratio D. The voltage and current sources are combined as shown, and the two transformers are combined intt) a single D.D transformer. The circuit is now in canonical form.

It can be seen that the inductance of the effective lt)w-pass filter is not simply equal to the physical inductor value L, but rather is equal to LID. At different quiescent operating points, with different values of D, the value of the effective indtictance will change. In ct)nseqtience, the transfer function, input impedance, and output impedance of the effective k)W-pass filter will also vary with quiescent operating point. The reason for this variation is the transformation of the inductance value by the effective D:i transformer,

It can also be seen from Fig. 7,fil that the coefficient of the (/() vohage generator is

ft,lj

(7.168)

This expression can be simplified by substitution of the dc relationships (7.29). The result is

(7.169)

When we pushed the output-side /<f(l) ctirrent source thrt)ugh the inductor, we obtained a voltage source having a frequency dependence. In consequence, the e(,v)rf voltage generator is frequency-dependent.

7.S.3 Canonical Circuit Parameter Values for Some Common Converters

For ideal CCM PWM dc-dc converters containing a single inducttff and capacittjr, the effective low-pass filter of the canonical model should contain a single inductor and a single capacitor The canonical model then redtices to the circuit of Fig. 7.62. It is assumed that the capacitor is connected directly across the load. The parameter values for the basic buck, boost, and buck-boost converters are ctjllected in Table 7.1. Again, it should be pointed out that the effective inductance depends not only on the physical



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 [ 84 ] 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300