Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 [ 87 ] 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

РтЫеш

v/f)


Fig. 7,fi7 Inverse SEPIC, Problem 7.7.

(c> Construct a smiill-signal ac equivalent eircuit model for this converter.

7.5 Construct J ctjmplete small-signtil tic ecuivjlent circtiii mtjdel ftjr the flyback converter shown in Fig.

7.1 S, operating in contimtous conduction mode. The transformer contains magnetizing Indnctance L referred to the primary. In addition, the transformer exhibits .significiini core loss, which can be modeled by a resistor/?;, in parallel with the primary winding. All otherelements щ-е ideal. You may use any valid mediod to solve this problem. Yotn model should correctly predict variations in iU).

7,fi Modeling the Cut convener. Yon may use any valid method lo solve ihis problem.

(a) Derive the small-signal dynamic equations that model the ideal Cllk converter.

(b) Construct a complete small-signal equivalent circuit model Itir the Cuk converter.

7.7 Modeling the inverse-SEPIC. You may use iiny valid method tu solve this problem.

(a) Derive the small-signjil dynamic equjtions ihai mtidel the ctmverler shown in Fig. 7.Й7. h) Construct ;i complele smtill-signal equivalent circuit model for the inverse-SEPIC.

7.8 Consider the nonideal buck convener of Fig. 7.68. The input voltage source v(t) has internal resistance R. Other component nonidealities may be neglected,

(a) Using the state-space averaging methtKl, determine the sinall-signal nc equations that describe variations in r, and i, which occur owing lo vjiriations in the transistor duly cycle dand input vohage v,

(b) Ctinslruct an ac equivalent circuit model corresponding to ytjur eqiutions of pjirt (гг).

(c) Stiive ytiur model lu determine an expressitin fur the smjli-signai ctmlrtil-Ui-titLlptil transfer luncuon.


FIk- 7.fi8 Motiideal buck converter. Problem 7,8.

7.9 Use Ihe circtiit-averaging technique lo derive the dc and small-signal ac equivalent circuit ofthe buck

converter with input filler, illustrated in Fig. 2.32. All elements are ideal.



<b)


Fig. 7.69 Bridge inverter. Problem 7.11: (a) circuit, (b) large-signal averaged model.

7.10 A flyback converter operates in the continuous conduction mode. The MOSFET switch has on-resistance й , and the secondary-side diode has a constant forward voltage drop Vq. The flyback transformer has primary winding resistance and secondary winding resistance fi,.

(a) Derive the small-signal nc equations for this converter.

(b) Derive a complete small-signal ac equivalent circuit model, which is valid in the continuous conduction mode and which correctly models the above losses, as well as the converter input and output ports.

7.11 Circuit averaging of the bridge inverter circuit of Fig. 7.69(a).

(a) Show that the converter of Fig. 7.69(a) can be written in the electrically identical form shown in Fig. 7.69(b). Sketch the waveforms i,it) and (l).

(b) Use the circuit-averaging method to derive a large-signal averaged model for this converter.

(c) Perturb and linearize your circuit model of part (b), to obtain a single equivalent circuit that models dc and small-signi! ac signals in the bridge inverter.

7J2 Use the circtiit averaging method to derive an equivalent circuit that models dc and small-signal ac sig-

nals in the buck-boost converter. You may assume that the converter operates in the continuous conduction mode, and that all elements are ideal.

(a) Give a time-invariant electrically identical circuit, in which the switching elements are replaced by equivalent voltage and current sources. Define the waveforms of the sources.

(b) Derive a large-signal averaged model for this converter

(c) Perturb and linearize your circuit model of part (b), to obtain a single equivalent circuit that models dc and small-signal ac signals in the buck-boost converter,

7J3 The two-output flyback converter of Fig. 7.70(a) operates in the continuous conduction mode. It may be

assumed that the converter is lossless.

(a) Detive a small-signal ac equivalent circuit for this converter.

(b) Show that the small-signal ac equivalent circuit for this two-output converter can be written in the generalized canonical form of Fig. 7.70(h). Give analytical expressions for the generators £>(.!) andy(s).

7.14 A pulse-width modulator circuit is constructed in which the sawtooth-wave generator is replaced hy a

triangle-wave generator, as illustrated in Fig. 7.71(a). The triangle waveform is illustrated in Fig. 7.71(b).



emblems 261

Fig. 7.70 T\vo-output tlyback converter, Problem 7.13; (a) converter circuit, (b) small-signal ac equivalent circuit.

Fig. 7.71 Piilse-width modulator, Problem 7.14.


PWM yvaveform



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 [ 87 ] 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300