Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 [ 90 ] 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

gl = 201o8, [61

(3.3) Table S.l Expiessitig magniiudes in tiecibels

Decibel values of some simple magnitudes are listed in Table 8.1. Care must be used when the magnitude is not dimensionless. Since it is not proper to take the logarithm of a quantity having dimensions, the magnitude must first be normalized. For exatnple, to express the magnittide of an impedance Z in decibels, we should normalize by dividing by a base impedance

Actual ikiignitude

Magnitude in dB

-6dB

s = \m

20dB-6dB= UdB

20 dB

1000= 10

3-20dB = 60 dB

2l = 20 log,

(Я.4)

The value of is arbitrary, but we need to tell others what value we have used. So if Z [ is 5 Й, and we chot)se R = 10 Si, then we can say that Z\\ = 20 log(,{5 ППШ) = - 6dB with respect to 10 tl, A common choice is Й;,., = 1Й; decibel impedances expressed with Rj,. = i Й are said to be expressed in dBi2. So 5 fi is equivalent to 14 dBQ. Current .switching harmonics at the input port of a converter are often expressed in dBiA, or dB using a base current of 1 f(A: 60 dBftA is equivalent to 1000 (A, or ImA,

The magnitude Bode plots of functions equal to powers of/are linear. For example, suppose that the magnitude of a dimensionless quantity (Jif) is

whereand n are constants. The magnitude in decibels is

G,5 = 201og,

= 2Qfi hig i

(8.5)

(8.6)

This equation is ploUed in Fig. 8.3, for several values of л. The magnitudes have value 1 => 0 dB at fre-q[iency/=/(J, They are linear functions of log[y(/). The slope is the change in G \\. arising from a unit change in logg(/); a unit increase in log[,(/) corresponds to a factor of 10, or decade, increase in /. From Eq. (8.6), a decade inctease in/leads to an increase in G j[Of 20и dB. Hence, the slope is 20k dB per decade. Equivalently, we can say that the slope is 2()ii 1о§[ц(2) = 6н dB per octave, where an octave is a factor of 2 change in frequency. In practice, the magnitudes of most frequency-dependent functions can usually be approximated over a limited range of frequencies by functions of the form (8.5); over this range of frequencies, the magnitude Bode plot is approximately linear with slope 20n dB/decade.

A simple transferfunction whose magnitude is of the form (8.5) is thepoff at tiie origin:

(8.7)

The magnitude is




log scale

fig. Ю Magnitude Bode plou of functions wtiicfr vary as/ are Jiriear, with slope ii dB per decade.

- L L

If we define / = Ы2п and /у = №j2n, then Eq. (K.8) becomes

(8.9)

which is of the form of Eq. (8.5) with n = -1. As illustrated in Fig. 8.3, the magnitude Btxle plot of the pole at the origin (8.7) has a -20 dB per decade slope, and pas.scs through 0 dB at frcqucitcy/=/д.

8.1.1 Single Pule Re.sponse

Consider the simple R-C low-pass filter illustrated in Fig. 8.4. The transfer function is given by the voltage divider ratio

R -ЛЛг-

(S.IO)

This transfer function is a ratio of voltages, and hence is P P

dimensionless. By multiplying the numerator and denominator by sC, we can express the transfer function as a rational fraction:

(8.11)



The transfer function now coincides with the following staniiarii normalized form for a single pole:

(S.l 2)

The parameter 0) = 2n/g is found by equating the coefficients of j in the denominators of Eqs. (8.11) and (8.12). The result is

(8,13)

Since R and С are real positive quantities, Щ is also real and positive. The denominator of Eq. (8.12) contains a root at s = and hence G(.<i) contains a real pole in the left half of the complex plane.

To find the magnitude and phase of the transfer function, we let iyto, where; is the square root of-I. We then find the mag- 1тСС0 ш)) nitude and phase of the resulting complex-valued function. With s = >), Eq. (S.l2) becotnes

0(M =

1 iiO

(3.14)

The complex-valued G(/01) is illtistrated in Fig. 8.5, for one value of (0. The magnitude is


Re(G(/uJ))

ii 0(М ii = y[Rc(G(Jco))] + [lm (C(/o))p

(8,15)

Fig. 8.S Magnitude aiid phase of the complex-valued function Gijtii).

Here, we have assumed that (flo is real. In decibels, the magnitude is

lGOar)), = -201og, /тт()

(8.16)

The easy way to sketch the magnitude Bode plot of G is to investigate the asymptotic behavior for large and small frequency.

For small frequency, И u)(j and/-*:/o, it is true that

(8.17)

The (tt)/ul) term ofEq. (8.15) is therefore much smaller than 1, and hence Eq. (8.15) becomes

(8.18)

In decibels, the magnitude is approximately



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 [ 90 ] 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300