Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 [ 91 ] 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

Fig, S,6 Magnitude asymptotes for itie single real pole transfer fimetion.

!GOto)jB J

-20 dB -

-60 dB


-20 dB/decade

C(>tu))-OdB

Thus, as illustrated in Fig. 8.6. at low frequency G(/ai) is asymptotic to 0 dB. At high frequency, м (й atid /э/о. In this case, it is true that

;& 1

We can then say that

(8.20)

(M.21)

Hetice, Eq. (8.15) m)w becomes

G(jto)=-

(8,22)

This expression coincides with Eq. (8.5), with n = -1. So at high frequency, й(/(й) has slop -20 dB per decade, as illustrated in Fig. 8.6. Thus, the asymptotes of G(/0)) are equal to 1 at low frequency, and ( f,) at high frequency. The asymptotes intersect at /(]. The actual magnitude tends toward these asymptotes at very low frequency and very high frequency. In the vicinity ofthe corner frequency/ц, the actual curve deviates somewhat from the a.4yinptotcs.

The deviation of the exact curve from the asymptotes can be found by simply evaluating Eq. (8.15). At the corner frequency /=/.Etj. (8.15) becomes

C(M)1 =

In decibels, the magnitude is

f.-(M>

= -3dB

(8,23)

(8,24)

So the actual curve deviates from the asymptotes by -3 dB at the corner frequency, as illustrated in Fig. 8.7. Similar arguments show that the actual curve deviates from the asymptotes by -1 dB at /=/ц/2



IGOco)[,B j

Kig. 8.7 Deviation of tlie actual curve from the asymptotes, real pole.

-tOdB -

-ZOdB

-30 dB


-20 dB/decade

and at /= 2/).

The phase of G(j(u) is

RefoOtu))

ZCa) = tan

Insertion of the re;il and imaginary parts ofEq. (8.14) into Eq. (8.25) leads to

ZG(.;(i3) = - tun

(8.25)

(8.26

This function is plotted in Fig. 8.8. It tends to 0° at low frequency, and to -90° at high frequency. Atthe corner frequency /=/(), the phase is -45.

Since the high-frequency and low-frequency phase asymptotes do not intersect, we need a third asymptote to approximate the phase in the vicinity of the comer frequency /).One way to do this is illus-

0 asymptote

Fig. 8,8 Exact phase plot, single real pale.




Kg. 8.9 One choice for the mid frequency phase asymptote, which correctly predicts the actual slupe at/=/ .


tiated in Fig. where the slope of the asymptote is chosen to be identical to the slope of the actual curve at/ = /(у It can be shown that, with this choice, the asymptote intersection frequencies and /j, are given by

(8,27)

A simpler choice, which better approximates the actual curve, is

- -to

(Й.2Й)

This asymptote is compared to the actual curve in Fig. 8.10. The pole causes the phase to change over a frequency span of approximately two decades, centered at the corner frequency. The slope ofthe asymptote in this frequency span is -45 per decade. At the brealc frequencies and the actual phase deviates from the asymptotes by tan~(0.1) = 5.7°,

The magnitude and phase asymptotes for the single-pole response arc summarized in Fig, 8.11.

It is good practice to consistently express single-pole transferfunctions in the normalized form of Eq. (8,12). Both terms in the denominator of Eq. (8.12) are dimensionless, and the coefficient of is unity. Equation (8.12) is easy to interpret, because of its normalized form. At low frequencies, where the (iViOo) term is small in magnitude, the transfer function is approximately equal to 1. At high frequencies, where the (i/tUj,) tenn has magnitude much greater than 1, the transfer function is approximately (.t/u)[,). This leads to a magnitude of (P/[,). The corner frequency is = (Oln. So the transfer function is written directly in terms of its salient features, that is, its asymptotes and its corner frequency.



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 [ 91 ] 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300