Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 [ 93 ] 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

Fig. 8.14 Inversion of the frequency axis: summary of the magnitude and phase Bode plots for the inverted real polo,

I GO-co) II,


+20 dB/decade

+90°

/ Л0


8.1,4 Frequency Inversion

Two other forms arise, from inversittn of the frequency axis. The inverted pole has the transfer function

(a.i-i)

As illustrated in Fig, S,14, the inverted pole has a high-frequency gain of 1, and a low frequency asymp-tt)te having a Ч-20 dB/decade slope. This form is useful for describing the guin of high-pass tillers, and of other transfer functions where it is desired to emphasize the high frequency gain, with attenuation of low-frequencies. Equatitm (8,35) is equivalent to

C(.!) =

(8.36)

However, Eq. (8.35) more directly emphasizes tliat the high frequency gain is 1. The inverted zero has the form

(8,37)

As illustrated in Fig. 8,15, the inverted zero has a high-frequency gain asymptote equal to 1, and a low-frequency asymptote having a slope equal to -20 dB/decade. An example of the use of this type of trans-



Converter Тпшфг Fuucfionx

II с(/ш) lu

-,-20 dB/deeade

Fig, S,1S Inversion ol llie frequency axis: summary of (he ningnimdc and phase Bode pior for Lhe inverted real zt№.

ZGiJw) -W


/ /10

fer function is the proportional-pius-integral controller, discussed in connection with feedback loop desigu in the next chapter Equation (8.37) is equivalent to

(ij.38)

However, Eq. (8.37) is the preferred form when it is desired to emphasize the value of the high-frequency gain asymptote.

The use of frequency inversion is illustrated by example in the next section. 8.1.5 Combinations

The Bode diagram of a transfer function contuining several pole, zero, and gain terms, can he constructed by simple additittn. At any given frequency, the magnitude (in decibels) of the cttmposite transfer function is equal to the sum of the decibel magnitudes of the individual terras. Likewise, at a given frequency the phase of the composite transfer function is equal to the sum of the phases of the individual terms.

For example, suppose thut we have already constructed the Bttde diugrums t)f twt) complex-valued functions of 0), G((j)) und G2((U), These functions have magnitudes Л(0)) and Rif), and phases ej(iu) and Й2(а)), respectively. It is desired to construct the Bode diagram of the prttdiict Cj(tu) = O((0)G2(Ci)). Let Оэ(Ш) have magnitude Л(Ш), and phase 6((li).To find this magnitude and phase, we can express ((ш), (O)), and f rj((J)) in polar form:



Cl{iii)R,Ыe

The product Gj(ti)) can then be expressed as

С,(ш) = С((0)(;з(ш) = /(.аде ! Й2(й))й-*2

Simplification leads tt)

Hence, the composite phine is Tiie total magnitude is

When exipressed in decibels, Eq. (8.43) becomes

(8.39)

(8.40)

(8.41)

(3.42)

(8.43)

(8.44)

So the composite phase is the sum tifthe individual phases, ami when expressed in decibels, the composite magnitude is the simi of the individual magnitudes. The composite magnitude slope, in dB per decade, is therefore also the sum ofthe individual .slopes in dB per decade.

II Gil

40dB


100 kHi

Fig. 8,16 Conatruclion of magnitude and phase asymptotes for the ttansler function of Eq,(B.45). Dashed line



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 [ 93 ] 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300