Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 [ 95 ] 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

called the damping factor. controls the shape t)f the transfer function in the vicinity of/ = /q. An altei-native standard normalized form is

where

(8.5S)

(8,59)

The parameter Q is called the quality factor of the circuit, and is a ineasure of the dissipation in the system. A more general definition of Q, for sinusoidal excitation of a passive element or network, is

Q = ln

(peak stoiedeneigy) (energy dissipated per cycle)

(8 60)

For a second-order passive system, Eqs. (8.59) and (8.60) are equivalent. We will .see that the Q-i-Actoi has a very simple interpretation in the magnitude Bode diagrams of second-order transfer functions.

Analytical expressions for the parameters Q and ti) can he found by equating like powers of.? in the original tiansfer function, Eq. (8.52), and in the normalized form, Eq. (8.58). The result is

11 . 1 ° 2n 211/LC

(8.61)

The lOOts .t, and of Eqs. (8.55) and (8.56) ;ire real when Q < 0,5, and are complex when Q > 0.5. The magnitude of G is

II ajiJi) II - -

Asymptotes of Ц G \\ are illustrated in Fig. 8.19. At low frequencies, (u)/Uy) 1, and hence

IIСII -> 1 for to <K (D

(8.62)

(8.ЙЗ)

-+t) (IB

-60 dB

0 dB/dccadc 1-(-

o.i/o Л

Fig, S.li> Magnitude asymptotes tor the two-pole transfer function.

lO/o



At high frequencies where a;. 1, the (tu/Ct) ) term

(iominates the expression inside the radical of Eq. (8.62). Hence, the high-frequency asymptote is

tor tl):

(8.64)


0 dB/decade

This expression coincides with Eq. (8.5), with jt = -2. Therefore, the high-frequency asymptote has slope -40 dB/

decade. The asymptotes intersect at/= L, and are indepen- ,. j.

, ff-f J f Fig. 8.20 Important teatures of the magni-

dent ot Q. jjjj jjyj pjjjj ijij. t,.p,lg u-ansfer

The parameter Q affects the deviation of the actual function curve frt)m the asymptotes, in the neighborht)od t)f the corner frequency , The exact magnitude at/=/) is found by substitution of W = Ь) into Eq. (8.62):

So the exact transfer function has magnitude Q at the corner frequency/,. In decibels, Eq. (8.65) is

llwl,.=lc?. t

So if, for example, Q = 2 =3i 6 dB, then the actual curve deviates from the asymptotes by 6 dB at the corner frequency/=./q. Salient features of the magnitude Bode plot of the second-order transfer function are summarized in Fig, 8,20, The phase of G is

ZGijo:} = tan

Q I

(8.67)

The phase tends to 0 at low frequency, and to -180° at high frequency. At/ = /( the phase is-90 . As illustrated in Fig, 8.21, increasing the value of Q causes a sharper phase change between the 0 and -180° asymptotes. We again need a midfrequency asymptote, to approximate the phase transition in the

Increasirtg Q

Ffe. 8,21 Ptiase plot, sccoiid4)rdor poles. Increasing Q causes a sharper phase change.




Fig. 8.22 One choice Ibr the iTiidtVeciteiicy phase asymptote of the two-pole response, which correctly predicts the actual slope at

-90=--

-180

Fig. Й.13 A simpler choice for the niidfrequeney phase asyinptote, wtiich better approjtimate.4 the curti over the entire frequency range and is consistent with the asymptote used for real poles.

-90°--

-180

vicinity of the comer frequency fy, as illustrated in Fig. 8.22. As in the ca.se of the real single pt)le. we ctndd chtjose the slope of this asymptote to be identical to the slope of the actual curve а/=У. It can be shown that this choice leads to the following asymptote break frequencies:


A better choice, which is consistent with the approximation (8.28) used for the real single pole, is

/,= 10- Vu

(8.68)

(3.69)

With this choice, the midfrequency asymptote has slope -180 degrees per decade. The phase asymptotes are summarized in Fig. 8.23. With Q - 0.5, the phase changes from 0° to -180° over a frequency span of approximately two decades, centered at the corner frequency /q. Increasing the Q causes this frequency span to decrease rapidly.

Second-Older response magnitude and phase curves are plotted in Figs. 8.24 and 8.25.



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 [ 95 ] 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300