Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 [ 96 ] 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

Fig, 8.14 Gxiicl imgnitudc ciiivsa, wo-pole lesponse, for sevcriil values otQ.

10 dB

-lOdB

-20 dB

Fig. 8.2S hxucl phase ULirves, [wn-pole response, for several values of Q.




S.1.7 The Lmv-Q Appru\imatioit

As mentioned in Section 8.1.6, when tlie toots of second-order denominator polynomial of Bq. (8.53) are real, then we can factor the denominator, and construct the Bode diagram using the asymptotes for real poles. We would then и.че the following normalized form:

This is a particularly desirable approach when the comer frequencies tUj and cu are well separated in value.

The difficulty in this procedure lies in the complexity ofthe quadratic formula used to find the corner frequencies. Expressing the comer frequencies (0, aud (U in terras t)f the circuit elements fi. L, С etc., invariably leads to complicated and unillurainating expressitras, especially when the circuit contains many elements. Even in the case of the simple circuit of Fig. 8.18, whose transfer function is given by Eq. (8.52), the conventional tiuadratic formula leads to the following complicated formula for the corner frequencies:

o) o),= --

-iLC (8,71)

This equation yields essentially no insight regarding how the corner frequencies depend on the element values. For exaraple, it can be shown that when the comer frequencies itre well separated in value, they can be expressed with high accuracy by the much simpler relations

0 L (ii.72)

El this case, (Uj is essentially independent ofthe value of C, and fflj is essentially independent of L, yet Eq. (8.71) apparently predicts that both corner frequencies are dependent on all element values. The simple expressions of Eq. (8.72) are far preferable to Eq. (8.71), and can be easily derived using the low- approximation [2].

Let us assume that the transfer function has been expressed in the standard normalized form of Eq. (8.58), reproduced below:

For Q< 0.5, let us use the quadratic formula to write the real roots ofthe denominator polynomial of Eq. (8.73) as

M l-v/t-4CJ (8.74)

Q 2

1 + у I - 4Q (8,75)



Fig. 8.26 F{Q) vs. as givcci by Eq, (8.77). The ujtijroiimattoii F(Q) = I is within \Ш of the exact value for G < 3.

The corner frequency CO can be expressed

0.75 - -


0.25 - -

(8.76)

where F(Q) is defined as [2]:

F(0) = (l+\Te

Note that, when Q 0.5, then 4Q -V- 1 and F{Q) is approximately equal to 1. We then obtain

to, = forC?

(8.77)

(8.78)

The function F{Q) is plotted in Fig. 8.26. It can be seen that F{Q) approaches 1 very rapidly as Q decreases below 0.5.

To derive a similar approximation lor we can multiply and divide Eq. (8.74) by F(Q\ Eq. (8.77). Upon simplification of the numerator, we obtain

F(Q)

(8,79)

Again, F{Q) tends to 1 for small Q. Hence, со, can be approximated as

u), Qjifi for Q 2

(8.80)

Magnitude asymptotes for the low-g са.че are summarized in Fig, 8.27. For Q < 0.5, the two poles at (Uo split into real poles. One real pole occurs at corner frequency to <{i)g, while the other occurs at corner frequency tO > ю,. The corner frequencies are easily approximated, using Eqs. (8.78) and (8.80).

For the filter circuit of Fig. 8.18, the paratneters Q and (О are given by Eq. (8.61). For the ca.se when Q 0,5, we can derive the following analytical expressions for the corner frequencies, using Eqs. (8.78) and (8.80):



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 [ 96 ] 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300