Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 [ 97 ] 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

Fig. 8,37 Magnitude asympwtcs predicted by the lriw-(2 approximaiion, Real poles occur at frequencies Qf aad ffQ.


-Ай dB/decaffi

LC jf fC

fLC 1 1

(8,81)

So the low-й approximation allows us to derive simple design-oriented analytical expressions for the corner frequencies.

8.1.S Approxiitifite Roots of an Arbitrary-Degree Polynomial

The low-й approximation can be generalized, to find approximate analytical expressions for the rottts of the n*-order polynomial

It is desired to factor the polynomial P{s) into the form

P[j)=[l + T,.f)(l-bT,;s)-(l + vj

(8.82)

(8,83)

In a real circuit, the coefficients л a are real, while the time constants Tj,.... t may be either real or complex. Very often, some or ail of the time constants arc well separated in value, and depend in a very simple way on the circuit element values. In such cases, simple approximate analytical expressions for the time constants can be derived.

The time constants T,.....can be related to the original coefficients a a,j by multiplying

out Eq. (8.83). The result is

(8,84)

General solution of this system of equations amounts to exact factoring of the arbitrary degree polynomial, a hopeless task. Nonetheless, Eq. (8.84) does suggest a way to approximate the roots.

Suppose that all ofthe time constants Tj, T,are real and well separated in value. We can further assume, without loss of generality, that the time constants are arranged in decreasing order of magni-



tude:

T, T,

When the inequalities ofBq. (B.85) are satisfied, then the expressions ford . dominated by their first terms:

a, -T,

These expressions can now be solved for the time constants, with the result

(8,65)

, rt of Eq. (8.84) are each (8.86)

(8.87)

Hence, if

then the polynomial P{s} given hy Eq. (8.82) has the approximate factorization F(s) = (l+a,]

(l+;

(8.88)

(8.89)

Note that if the original coefficients in Eq. (8.82) are simple functions of the circuit elements, then the approximate roots given hy Eq. (8.89) are similar simple functions of the circuit elements. So approximate analytical expressions for the roots can he obtained. Numerical values are substituted into Eq. (8.88) to justify the approximation.

In the ciise where two of the roots же not well separated, then one of the inequalities of Eq. (8.88) is violated. We can then leave the corresponding terms in quadratic form. For example, suppose that inequidity к is not satisfied:

(8.У0)

Then an approximate factorization is



s.l Revieve of Bode PloK

II CL = 20106,(1 СII The conditions for accuracy of this approximation are

(8,91)

3> Г5!>

1-1

(8.92)

Complex conjugate roots can be approximated in this manner.

When the first ineqtiality of Eq. (8.88) is violated, that is.

then the first two roots should be left in quadratic form

f,

+ -i s

1 +

[ a -i J

This approximation is justified provided that

(8.93)

(8.94)

(8.95)

If none of the above approximations isjustified, then there are three or more roots that are close in magnitude. One must then resort to cubic or higher-order forms.

As an example, consider the damped EMI filter illustrated in Fig. 8,28. Filters such as this are typically placed at the power Input of a converter, to attenuate the switching harmonics present in the converter input current. By circuit analysis, on can show that this filter exhibits the following transfer function:

V(J) Gis) = f- =

This transfer function contains a third-order denominator, with the following coefficients:

(8.96)


Fig. 8.28 input EM I filter example.



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 [ 97 ] 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300