Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 [ 99 ] 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

8.2 Analysis of Convener Transfer Funaions 295

(8.113)

We next expand the parallel et)tnbinati[)ii, and exptess as a rational fraetion:

R \

\*.;RC}

i-D] R

1 +sfiC

(8.114}

We arent done yet-the next step is to manipulate the expression into nortnalized form, suoh that the coefficients of s in the numerator and denominator polynomials are equal to one. This can be accotn-plished by dividing the nuraeratorand denominator by R:

R D

(8.iI5)

Thus, the line-to-output transfer function contains a dc gain Ciq and a quadratic ptile pair:

(8.116)

Analytical expressions for the salient features ofthe line-to-output transfer function are fotmd by equating like tenns in Eqs. (8.115) and (8.11Й). The dt gain is

By equating the coefficients of i in the detioniinators of Eqs. (8.115) and (8.116), we obtain

(8.П7)

(8.118)

Hence, the angidar comer frequency is

By equating coefficients of.? in the denotninators of Eqs. (8.115) and (8.116), we obtain

1 L Q(u lyR

(8.119)

(8.120)

Elimination of using Eq. (8.119) and solution for Q leads to



Convener Тгапфг Fmiaions


Fig. 8.31 Manipulaiion of buck-boost etiiiivalciit circuit to find thi; control-to-output transfer function G,j(j): (a) set v, source to zero; (b) push inductor and voltage source through transformer

{8.121)

Equations (8.117), (8.119), and (8.121) are the desired results in the analysis of the line-to-output transfer function. These expressitms are useful not only in analysis situations, where it is desired to find numerical values of the salient features iiQ, Щ, and Q, but also in design situations, where il is desired to select numerical values for/t, L and С such that given values of the salient features are obtained.

Derivation of the control-to-output transferfunction Cv,/) is complicated by the presence in Fig. 8.29 of three generators that depend on One good way to find Gj(.v)is to manipulate the circuit model as in the derivation of the cantjnical model. Fig. 7.60. Atiother approitch, used here, employs the principle of superposition. First, we set the v, source to zero. This shorts the inptit to the 1:D transformer, and we are left with the circuit illustrated in Fig. 8.31(a). Next, we push the inductor and d voltage source through the D:l transformer, as in Fig. 8.3 i(b).

Figure 8.31(b) contains a (/-dependent voltage source and a -dependent current s[)urce. The transfer fimction G,(i) can therefore be expressed as a supeфosition of terms arising from these two sources. When the current source is set to zero (i.e., open-circuited), the circuit of Fig. 8.32(a) is obtained. The output v(s) can then be expressed as

v(.)

[ и J

(8.i22)

When the voltage source is set to zero (i.e., short-circuited), Fig. 8.31(b) reduces to the circuit illustrated in Fig. 8,32(b). The output i(.v) can then be expressed as

dis) ~

(8,123)

The transferfimction Gfs) is the sum of Eqs. (8.122) and (8.123):



s.2 Aimlysi.i of Converter Transfer Fwiclioiis 297

Fig. 8.32 Solution of the model of Fig. 8.32(b) by superposition: (a) current source set to zero; (b) voltage source set to zero.

о cdp m к R

v,-v

rL

(?,124)

By algebraic tnanipulation, one can reduce this expression to

(8.125)

This equation is ofthe form

(8.126)

Tliedentminators ofEq. (8.125) atid (8.115) ate identical, and hence Gi) andGj,(jJshare the aametilfl and Q. given by Eqs. (8.119) and (8.121). The dc gain is

V - V V,

s V

(8.127)

The angular frequency of the zero is found by equating coefficients of .5 in the numerators of Eqs. (8.125) and (8.126). One obtains

LI DL

(RHP)

(3.128)

This zero lies in the right half-plane. Equations (8.127) and (8.128) have been simplified by use ofthedc relationships



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 [ 99 ] 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300