Главная  Материалы 

 

Строительные материалы на основе магнезиальных вяжущих веществ

 

Данди, 29 декабря. Сильная буря. В ближайшие несколько дней поезда на участке Сан-Эндрюс Данди ходить не будут .

 

Тайме , 30 декабря 1879 г.

 

Река Тей в Шотландии образует вблизи города Данди большое озеро, через которое в 70-х годах прошлого века был построен внушительный мост: общая длина 4 км, высота от уровня вод до рельсовых путей -27 м, стальные конструкции перекрывали 85 пролетов длиной от 9 до 75 м.

 

Еще в середине XIX в. Северобританская железнодорожная компания решила построить подобное сооружение, но понадобилось 15 лет, чтобы добиться разрешения от правительства. Зондирование трассы показало, что грунт ненадежен. Эскизный проект предполагал вполне приемлемую стоимость строительства, и был объявлен аукцион, который выиграла именно та компания, которая разработала эскизный проект. Однако в рабочем проекте стоимость строительства увеличилась почти на 67%, в связи с чем был сделан ряд конструктивных изменений с целью его удешевления. Изменения эти с нынешней точки зрения пошли не на пользу будущему сооружению. Началось строительство. И снова неожиданность: оказалость, что надежная скала является лишь тонкой прослойкой скальной породы, под которой кроются бездонные плывуны. Фирма отказалась от строительства, заплатив огромную неустойку, а работы продолжила другая фирма, которая тоже в свою очередь внесла конструктивные изменения в проект, Мост был готов 30 мая 1878 г.; на его открытии присутствовали члены королевской семьи.

 

В связи с перипетиями проектирования и строительства максимальная скорость поездов на мосту была ограничена до 40 км/ч. Однако она систематически превышалась, как показал потом на процессе один из свидетелей. Так или иначе, но с самого начала наблюдались опасные вибрации. Рабочие, обслуживающие мост, например, специально привязывали свои ящики с инструментами, чтобы они не перевернулись во время прохождения поезда. Итак

 

... В последнюю неделю 1879 г. в районе Данди бушевала сильная буря. В 7 ч вечера паровоз пассажирского поезда из Эдинбурга поравнялся с сигнальной будкой на южном конце моста; он двигался со скоростью 5 км/ч. Стрелочник Баркли подал машинисту сигнал жезлом, что давало право въезда на одноколейный мост, и направился обратно к будке, сильно согнувшись под напором ветра. До места он добрался чуть ли не ползком. Состав выехал на мост, быстро набирая скорость. Вдруг я ощутил особенно сильный порыв ветра, рассказывал потом Баркли. -Обернувшись, я на мгновение увидел яркий свет, а затем все снова погрузилось во мглу. Я не почувствовал ничего особенного, потому что еще не знал, что я спасся, а мост рухнул .

 

Поезд № 16 вышел из Сан-Эндрюса, но так и не пришел в Данди. Как потом установили водолазы, он вместе со всеми пассажирами лежал на дне озера, заключенный в металлическую ферму моста.

 

Эта строительная катастрофа потрясла весь цивилизованный мир. Это пример из прошлого, но примеры такого рода есть и в настоящем, хотя их и не так много. Внезапное разрушение зданий и сооружений при далеко не критических обстоятельствах отнюдь не является невозможным, хотя в последнее время это случается исключительно редко, Однако подобными случаями заполнены целые страницы в черной книге истории техники.

 

В 70-х годах прошлого века, когда не были разработаны Британские стандарты ветровых нагрузок, конструкторы пользовались таблицами, утвержденными Королевским научным обществом еще в 1759 г. В этих таблицах указывалось, что самый сильный ветер (буря) может оказывать горизонтальное давление до 58 кг/м Следует отметить, что немецкие мостостроители в это время проектировали свои сооружения из рас^ чета ветрового напора в 135 кг/см^, а французские и американские до 258 кг/см Так что традиционный английский консерватизм проявился и здесь, хотя, надо сказать, автор проекта специалист по гражданскому строительству не пользовался даже этими таблицами. Как он сам заявил в следственной комиссии, расчетная надежность моста в 20 раз превышала вертикальные эксплуатационные нагрузки (!), в связи с чем какие-либо специальные меры для восприятия ветровых нагрузок он считал излишними. Но для такого высокого и изящного моста, как на р. Тей, подобное представление оказалось роковым. Реальный коэффициент надежности не только не был равен 20, но не достигал и единицы, а значит, мост с самого начала был обречен. Ни качество материала, ни качество работы, ни целесообразность поперечных связей ничто из того, что подвергалось большей или меньшей критике, не угрожало мосту в такой степени, как общая его неустойчивость. При особенно сильном порыве ветра он просто перевернулся. Полностью были разрушены конструкции 13 пролетов, а частично чугунные столбы вплоть до каменных оснований, на которых они практически не были достаточно хорошо закреплены.

 

Опасности таит в себе буквально каждый миг биографии сооружения. Эмоционально они определяются словами незнание , недобросовестность или небрежность , а что касается их специальной инженерной классификации и описания, то для этого необходимы целые тома. Вообще говоря, решающее значение могут иметь ошибки, допущенные на любой из четырех стадий создания и существования сооружения; при изысканиях, проектировании, строительстве и эксплуатации. Первая стадия таит в себе главным образом неожиданности геологического характера (слабый грунт и т. д.), и недостаточно тщательно проведенные изыскания могут впоследствии стать причиной больших неприятностей. Процесс проектирования в значительной степени субъективен; он зависит от конкретных знаний, возможностей и опыта проектировщика, однако в конечном счете он обусловлен уровнем научно-технических знаний в данный исторический период. Само строительство является чуть ли не самым слабым звеном в цепи. Ряд его специфических особенностей дает возможность (потенциальную) отклонения от требований проекта, проявления опасной инициативы и даже допущения грубых ошибок, которые могут скомпрометировать и самый лучший проект.

 

Что касается эксплуатации, то она имеет свои тонкости. Например, за мостами, которые находятся в тяжелых эксплуатационных условиях, должен осуществляться в течение всего срока их службы систематический контроль, позволяющий регулярно выявлять деформации и оценивать состояние отдельных элементов. Отсутствие такого контроля оказывается причиной большинства аварий мостов.

 

Из-за отсутствия технического надзора произошла катастрофа старого моста в филиппинском городе Нага-Сити в 1972 г., о которой мы уже рассказывали. Но, к счастью, сейчас сообщения о драматических инцидентах в строительстве появляются очень редко. Аварии и дефекты, разумеется, неизбежны при освоении экспериментальных технологических процессов, конструкций или методов работы. Но они представляют собой лишь отклонение от нормального положения вещей, которое, как правило, своевременно замечается и успешно устраняется. При нынешнем высоком уровне инженерных знаний и опыте, при высокоточной системе контроля за состоянием конструкции объективные предпосылки катастрофы практически отсутствуют. Остаются субъективные . . . Но это фактор риска, обусловленный особенностями человеческой природы, социальным фоном соответствующей страны, характером общественно-экономического строя. Вероятно, страницы больших строительных катастроф уже почти дописаны. Подобные события случались главным образом в прошлом ...

 

Весь XIX и начало XX в. оказались переломными для мирового строительства. Человек постепенно заменял несовершенные природные материалы (дерево и камень) сначала металлом, а затем и железобетоном. Но конструктивные формы развивались медленнее, чем металлургическая промышленность. Переход от одних материалов к другим осуществлялся тоже медленно, часто с большими трудностями и неудачами. Необходимо было время, чтобы обнаружить плюсы и минусы уже построенных объектов нового типа, целесообразность новых форм и концепций. Теория строительства отставала от практики; в то время она нуждалась в первооткрывателях, прокладывавших путь для строительной механики. При таком положении именно аварии и катастрофы выявляли пробелы в инженерном знании, именно они были стимулом развития теоретической и экспериментальной базы строительства. Однако есть множество случаев крупных аварий, которые нельзя оправдать ничем. Именно таким случаем является катастрофа моста на р. Тей.

 

Но вернемся теперь в наши дни и рассмотрим аварии строительных конструкций, имевшие место у нас на родине — в НРБ. За последние 10-20 лет произошло несколько весьма поучительных случаев. В 1966 г. во время бетонирования обрушился арочный железнодорожный мост в районе Лакатника. Были человеческие жертвы. В сущности, обрушился каркас, поддерживающий опалубку, сложная большепролетная деревянная конструкция. Причиной аварии был ряд ошибок, допущенных при статических расчетах.

 

Причиной другой аварии являлось качество материала. Внезапно рухнула часть крытой разгрузочной площадки на ТЭЦ Девня . Действие и тут развивалось в процессе строительства; конструкция была выполнена из сборного железобетона. Видимых причин для аварии не было. Детальная проверка проекта показала, что все в порядке. Тогда закрались сомнения в качестве стали. Оказалось, что при соответствии Болгарскому государственному стандарту содержание углерода и кремния в ней близко к верхней границе нормы. Вследствие повышенной хрупкости стали на участках изгиба в рамных узлах произошел внезапный разрыв арматуры, что привело к катастрофе. Разумеется, стандарт на сталь после этого был соответствующим образом скорректирован.

 

И все же чаще всего причиной аварий являются дефекты исполнения. Именно они привели к аварии жилого дома в Шумене, общежития в Кырджали, магазинов в Пазарджике и Благоевграде, школ в Радомире и Свиштове. Моральная и материальная ответственность может иметь самые неприятные, а иногда и роковые последствия.

 

Иногда строительные аварии бывают не менее страшными и драматичными, чем авиационные катастрофы. Но, к счастью, это случается редко, очень редко. Возможности крупных аварий зданий и сооружений в последние годы значительно уменьшились. Развитый экспериментально-теоретический аппарат, высококачественные материалы, современные технологические методы, четкая организация строительства и строгий технический надзор — вот те основные условия, которые позволяют свести эти возможности к минимуму.

 

Ксилолит — нередко именуемый и как магнолит, относится типу деревобетонов и представляет собой мелкодисперсный конгло мерат, в котором спрессованные древесные опилки и, возможно древесная мука сцементированы в прочный и плотный каменны материал с помощью цемента Сореля. Последний приготовляется из каустического магнезита путем его затворения водным раствором хлористого магния (MgCb). Соответствующие пластичные смеси ксилолитовой массы с красителем используют для устройства бесшовных полов, а без красителей — для устройства оснований под чистые полы из плиточных и рулонных полимерных материалов. Уложенный слой ксилолита уплотняют, циклюют, затирают и шлифуют. Из жесткой ксилолитовой массы прессуют плиточный материал для полов и ступеней в горячем состоянии под давлением 30 МПа. Обе разновидности полов отличаются бесшумностью, малой теплопроводностью, значительной твердостью (5—7,5 а для плиток 10—14 по Бринелю) и большой прочностью: при сжатии 20—40 МПа, при растяжении 3—5 МПа. Полы гигиеничны, негорючи и долговечны.

 

В качестве органического заполнителя можно применять не только опилки, но и древесную шерсть, древесную стружку хвойных пород, льняную костру и др.

 

На основе магнезиальных вяжущих веществ изготовляют ксил лит, фибролит, штукатурные растворы, некоторые архитектурны изделия, реже — бетоны.

 

Смесь, соответствующую составу фибролита, укладывают в формы и прессуют. Она твердеет в обжатом состоянии. Плиты сушат на заводе до влажности 15—20%. В зависимости от плотности (в кг/м3) фибролит подразделяют на марки: Ф300, Ф400 и Ф50 Теплопроводность плит 0,7—1,0 Вт/(м-К) при температуре 20°С.

 

В отличие от других неорганических вяжущих каустический магнезит, как отмечено выше, затворяется не на воде, а на водном растворе хлористого или сернокислого магния. Для затворения возможно применять и некоторые другие соли — ZnCh, FeSCU и др. Соотношение по массе: MgO — 62—67% и MgCh • 6Н2О — 38—33%) (в пересчете на активный оксид магния). Для снижения гигроскопичности и повышения водостойкости допускается вводить в смесь железный купорос FeSCU с заменой до 50% раствора хлористого магния. Целесообразное соотношение по массе компонентов ксилолита устанавливают экспериментальным путем, причем всегда желательно использовать общий метод проектирования состава ИСК.

 

Изложенное выше почти в полной мере относится и к использованию в качестве вяжущего вещества каустического доломита, хотя приходится учитывать его значительно меньшую прочность, чем каустического магнезита — в два-три раза. Вместе с тем оба этих магнезиальных вещества остаются воздушными и не обеспечивают стойкую микроструктуру ИСК на их основе при длительном контакте с водной средой.

 

Фибролит изготовляют в виде конструкционно-теплоизоляционного или теплоизоляционного материала, чаще всего плит толщиной 30, 50, 75 и 100 мм, шириной 500—600 мм, длиной до 2500 мм. Масса стружки или древесной шерсти составляет около 30% массы фибролита. В качестве вяжущего вещества чаще всего используют портландцемент, цемент Сореля.

 

При добавлении к магнезиальному вяжущему веществу поризующих ингредиентов возможно получить не менее эффективные, чем фибролит, теплоизоляционные материалы — пеномагнезит и газомагнезит.

 

Кроме горных пород магнезита и доломита в качестве сырья Для получения магнезиальных вяжущих веществ используют техногенное магнезиальное сырье более сложного химического состава. Оно является попутным продуктом добычи и переработки горных пород ультраосновного состава при получении железа, меди, алмазов, асбеста и других полезных ископаемых. По ориентировочным подсчетам на горно-обогатительных комбинатах нашей страны такого техногенного сырья скопилось более 900 млн.т. Особенно эффективные диоксидсодержащие попутные продукты получают от переработки магматических и некоторых метаморфических пород, содержащих диоксиды. На основе такого рода попутных продуктов вырабатывают модифицированный цемент Сореля, портланд-цементный клинкер, строительные пигменты, бетоны плотные тяжелые и пористые легкие, другие строительные материалы (по данным исследований В.В. Прокофьевой).

 



Песколовки. Санитарно-химические показатели загрязнения сточных вод. "шлягер" каркаса. Систематизация факторов. Системы водоотведения на подтапливаемых территориях. Склады арматурной стали. Скользящая опалубка.

 

Главная  Материалы 



0.0119