Главная  Материалы 

 

Получение чугуна

 

Но вернемся опять в прошлое, точнее — в недалекое прошлое. Во второй половине дня 29 августа 1907 г. разразилась одна из самых драматичных в истории техники и единственная в своем роде строительная катастрофа. Действие происходит в Канаде, в 14 км юго-западнее Квебека.

 

Двумя годами раньше в этом месте началось строительство одного из крупнейших мостов нашего времени. При общей длине около 1 км мощная стальная конструкция моста несла на своих плечах два железнодорожных пути, две трамвайные линии, два шоссейных полотна и два тротуара. Мост строился по проекту железнодорожной компании, финансировавшей строительство. Разработка рабочих чертежей и монтаж стальных конструкций были возложены на одну фирму, а устройство оснований и опор на другую. Все контракты были уже заключены, когда по совету главного консультанта, американского инженера Купера, центральный пролет моста был увеличен с 488 до 549 м. Благодаря этому уменьшалась глубина заложения фундаментов и стоимость опор, а пролет становился рекордным.

 

О величине сооружения красноречиво говорит даже то, что у береговых опор высота конструкции достигала 96 м, а диаметр соединительных болтов равнялся 60 см! Оригинальность технологии возведения огромного центрального пролета состояла в следующем: сначала от обоих берегов навстречу одна другой монтировались мощные фермы-консоли, а затем на них водружалась 195-метровая центральная ферма, которая в готовом виде доставлялась по реке на баржах. При таком методе монтажа две консольные части соединялись в общую систему без промежуточных опор, преодолевая широкое русло реки.

 

Летом 1907 г. южная половина моста была уже готова; усиленно монтировалась консоль центрального пролета. На фермах находилось два t крана: один массой 1100 т, а другой 250 т. Однако в начале августа -рабочие заметили, что стальные листы, из которых состоял наиболее мощный (сжатый) нижний пояс, обнаруживают признаки потери прочности. По этому поводу между строительной и финансирующей фирмами завязалась переписка. Возникли взаимные претензии монтажной организации и завода—изготовителя стальных конструкций.

 

За девять дней до катастрофы инспектор железнодорожной компании установил наличие сильного изгиба еще в трех панелях постепенно наращиваемой консольной части, но на его предупреждение не обратили достаточно серьезного внимания, На состоявшемся 27 августа совещании положение было охарактеризовано как серьезное, но не угрожающее . В тот же день крановщик получил распоряжение выдвинуть вперед еще одну секцию и ускорить монтаж. Строительный сезон и без того приближался к концу, и никому не хотелось прекращать его преждевременно. Однако все же было принято решение сообщить о странном положении главному консультанту.

 

Инженер Купер был одной из ведущих фигур в мостостроении тех лет. Специалист с многолетним опытом практической деятельности и безупречной международной репутацией, он владел всеми тонкостями своей профессии, и его советы воспринимались как закон. Однако, будучи в преклонном возрасте, он постоянно болел и за все время строительства ни разу не посетил объект.

 

На следующий день среди рабочих началось брожение, но, несмотря ни на что, работа продолжалась. 29 августа пришла долгожданная телеграмма из Нью-Йорка, Положение отнюдь не катастрофическое , бодро извещала она.

 

На следующий день, за четверть часа до окончания рабочего дня, произошла одна из самых крупных катастроф в истории техники. С громоподобным треском рухнули девять тысяч тонн стальных конструкций вместе с кранами и рабочими: за считанные секунды огромный мост превратился в кучу жалких обломков. Из 86 человек, работавших в это время на мосту, в живых остались лишь 1 Большая часть обломков погрузилась на глубину до 42 м. Чтобы очистить речное дно, понадобилось два года напряженного труда.

 

Для выяснения всех обстоятельств катастрофы была назначена правительственная комиссия. Мы не будем распространяться ни о работе комиссии, ни о причинах столь грандиозной катастрофы. Как обычно в таких случаях, причин было значительно больше, чем одна или две. Заслуживает внимания другое этому мосту не везло с самого начала. Его злоключения не кончились описанными событиями. Девятью годами позже при не менее драматических обстоятельствах и на глазах у гораздо большего числа очевидцев с ним произошла новая катастрофа. После этого мост на р. Св. Лаврентия близ Квебека стал беспрецедентным случаем строительных катастроф в истории техники.

 

Но вернемся к теме нашего разговора. Человечество еще не имело опыта в строительстве столь масштабных сооружений, Инженерно-теорехический аппарат тогб .времени хотя и стал значительно сильнее, чем во времена Навье и Кулона, все же был еще не совсем полным и содержал существенные пробелы, которые зачастую оказывались решающими.

 

Вообще говоря, конструкторское мышление всегда развивалось быстрее, чем инженерно-теоретический аппарат. Строительная механика рождена строительной практикой, и чтобы она могла разработать теоретический аппарат для расчета объекта, последний должен быть уже построен. Как теоретическая наука прямой практической ориентации, она черпает жизненные соки из нужд конструктивных идей и реализованных объектов строительства. Например, никогда бы не появилась теория тонкостенных пространственных конструкций, если бы не были созданы пионерные образцы, убедительно доказывающие свою конструктивную и технико-экономическую целесообразность.

 

К сожалению, в недалеком прошлом (и даже в наши дни) строительная механика не успевала угнаться за смелыми поисками практиков. Часто конструкторы почти вслепую работали на территории , которую предстояло завоевать лишь в будущем. При таком положении вещей только аварии и катастрофы были основными индикаторами пробелов в инженерных знаниях. Однако мы вовсе не оправдываем грубых ошибок, допущенных на освоенной земле . Мы хотим лишь подчеркнуть тесную связь и взаимозависимость между теорией и практикой, которая в строительстве проявляется значительно более отчетливо, чем в других инженерных специальностях.

 

Почему? Сложность в том, что здания и сооружения являются наиболее масштабными из инженерных творений человека. Здесь, как правило, нет и не может быть опытных образцов и экспериментальных серий; чаще всего объекты сами по себе уникальны. Следовательно, отсутствует тот этап инженерного творчества, когда своевременно могут быть выявлены и устранены недостатки решения, слабости проекта, вообще все то, что на чертежном столе заметить и предсказать нельзя.

 

Здания и сооружения, так сказать, по условиям игры должны отвечать сложному комплексу требований, которые к ним предъявляются. Отсюда вытекает необходимость в очень точной системе методов передвижения всего: нагрузок, эксплуатационных условий, самых различных экстремальных состояний, которых в данный момент может и не быть, размеров отдельных несущих элементов и связей между ними, обеспечивающих достаточную надежность при минимальных затратах материала, труда и вообще средств. Ясно, что аппарат строительного ясновидения может быть в основном теоретическим.

 

Воспользуемся примером авиации. Каждый новый двигатель для выяснения его моторесурса испытывается на специальных стендах чуть ли не до полного выхода из строя. Излишне производить сложные теоретические расчеты, когда можно быстрее и проще получить более точные результаты путем непосредственных испытаний, даже если затраты при этом будут несколько больше. Каждая опытная модель самолета многократно облетывается пилотами-испытателями, и путем непосредственных измерений устанавливается величина всех характеристик нагрузок, напряжений и деформаций, которые до этого были определены теоретически. Если возникает необходимость, в конструкцию вносятся изменения, соответствующие реальным условиям, реальным параметрам и пусть более тяжелому, но реальному режиму работы.

 

В строительстве такие удобства отсутствуют. Да вряд ли они и могут быть. Никто не может позволить себе построить 30-этажное здание в качестве опытной модели для генеральной репетиции настоящего строительства, для наблюдения за тем, как оно будет вести себя во время ураганного ветра или землетрясения. Все должно быть предусмотрено в проектной мастерской.

 

Разумеется, весьма ценен опыт наблюдения за уже построенными зданиями и сооружениями подобного типа. Анализ типичного, закономерного служит как бы основой для последующего проектирования конструкций данного рода при близких условиях работы. С другой стороны; ценная информация о многих явлениях и процессах в сложных сооружениях может быть получена путем исследования моделей и макетов. Но, поскольку полного подобия во всем достичь невозможно, такие исследования не могут решить основных проблем строительства.

 

Вопрос еще более усложняется в связи с одной сильной тенденцией современности стремлением к экономичному строительству. В прошлом, когда не существовало еще теоретического аппарата строительного ясновидения , люди строили безумно расточительным образом. Сохранившиеся до наших дней памятники древнего строительства замечательны не только своим архитектурным обликом, но и характером разрешения конфликта между конструкцией и нагрузкой: только чудовищный перерасход материала и человеческого труда обеспечивал их многовековую прочность и непоколебимость.

 

Подобного строительства сейчас при его массовых масштабах не может себе позволить ни одно государство. Да это и не нужно: морально и функционально здания устаревают очень быстро. Выход в минимальных затратах на строительство зданий и сооружений при степени надежности, приемлемой как с моральной, так и с экономической точки зрения. Но именно это балансирование на краю пропасти требует особо точного теоретического аппарата.

 

Поскольку результаты строительства обусловлены такими факторами, как расходы материалов, затраты труда, сроки сооружения, объем капиталовложений и т. д., решение вопроса каким будет здание? (или сооружение) является неоднозначным, вернее, решений может быть много. В этой деликатной области мировая практика представлена тремя школами — советской, европейской и американской.

 

Советская конструктивная школа комплексно рассматривает все факторы, влияющие на конечный продукт строительства. Решения оптимизируются по обобщенным показателям и, по-видимому, учитывают характерные особенности планового хозяйства социалистического общества на данном этапе его развития в общегосударственном масштабе.

 

Позиция европейской конструктивной школы может быть приемлема как одно из возможных решений задачи, условием которой является минимальный расход материала. Каждое сооружение рассматривается чуть ли не как уникальное, и путем тщательных расчетов от него отсекается каждый лишний килограмм, благодаря чему конструкция получается максимально легкой. Конструктивные решения американской школы ориентированы на условие минимальных затрат человеческого труда с учетом килограммов сооружения. Очевидно, что в различных случаях немалое значение имеют и основные социально-экономические особенности стран, обусловленные их общественным строем. Очевидно и то, что планомерность и гуманность социалистической системы не может не оказать благотворного влияния на конструктивные решения и их реализацию.

 

Конструкторы середины минувшего столетия имели в своем арсенале только науку о сопротивлении материалов. Она позволяла им определять с достаточной для того времени точностью напряжения и деформации в элементах линейного, балочного и стержневого типа, т. е. в элементах (или конструкциях), у которых один размер (длина) намного больше двух других. Однако в практике строительства начали появляться и плоскостные (пространственные) конструктивные формы, такие,как плиты, своды, оболочки, а также сложные пространственные конструкции, состоящие из линейных элементов. Все они выходили за рамки области, на которую распространялся радиус действия такого дальнобойного оружия , как сопромат.

 

Это вызвало необходимость выделения и обособления специальной науки, которая называется строительная статика . Ее задача заключается в разработке методов определения усилий и деформаций в конструкциях всех видов. Параллельно с ней развивается методологический фундамент строительной механики — теория упругости. Это тяжелая артиллерия механики, законы которой периодически простреливают ее прикладные области, чтобы скорректировать их результаты; в сущности, она дает наиболее общие решения, распространяющиеся и на самые сложные реальные конструкции.

 

Но, как мы уже знаем, в действительности строительные материалы не являются ни идеально упругими, ни изотропными. Поэтому постепенно выделились научные направления, изучающие работу упругопластичных тел при различных силовых воздействиях и в составе различных конструктивных форм. Более того, в последние десятилетия теория взяла в работу и фактор времени. Зависимость напряжений и деформаций от времени для нас уже не тайна; она не была тайной для специалистов и сорок лет назад. Однако гораздо труднее было создать механико-математические модели явлений, которые еще не были достаточно хорошо изучены. Математической интерпретацией таких явлений в строительных материалах и конструкциях занимается специализированная отрасль науки.

 

Но оказалось, что в ряде случаев постулаты статики бессильны. У многих конструкций напряженные и деформационные состояния могут быть крайне неустойчивыми и взрывообразно изменять свой характер; проще говоря, конструкция становится аварийной, даже разрушается. Проблемы механической устойчивости решаются наукой об устойчивости конструкций. Величины критических нагрузок и напряжений, определенные с помощью методов этой науки, позволяют избежать наиболее драматическую форму невидимого конфликта. Ведь именно потеря устойчивости была главной причиной внезапной катастрофы моста на р. Св. Лаврентий в Канаде.

 

Важное место в арсенале методов нынешнего конструктора занимает строительная динамика, которая занимается изучением напряженных и деформационных состояний, возникающих под действием динамических нагрузок. Как мы видели, большая часть силовых воздействий имеет подчеркнуто динамический характер, но только во второй половине XX в. средства предвидения их эффекта количественно и качественно доросли до такого уровня, когда оказалось возможным объединить их в новую науку.

 

А геомеханика? Относительно поведения и свойств почвы, которая в течение многих лет должна носить на себе тысячетонный груз зданий и сооружений, тоже не все ясно. Более того, здесь гораздо больше тайн и ненадежности, чем в любой другой области, связанной со строительством. Разгадыванием этих тайн и поисками путей преодоления этой ненадежности как раз и занимается геомеханика.

 

Вот краткое описание боевых соединений современного инженера-полководца. И, как все настоящие соединения, они состоят из многочисленных частей и подразделений, многие из которых имеют специальное назначение и сами являются особь!ми науками. Роль теоретического аппарата в строительном проектировании огромна, но современные тенденции требуют от него все большей широты и точности. Поэтому если не все, то большинство направлений нынешней математики поставлено на службу строительной механике. Мы не удивим читателя тем, что строительная механика математизирована с головы до пят . Она представляет собой арену, на которой современная математика показывает, на что она способна. Но на этой арене математика сама оказывается средством, с помощью которого инженер проникает в таинственный мир невидимого конфликта подобного тому, как с помощью скальпеля хирург проникает в табу человеческого организма. Средство, без сомнения, вещь важная, и слава специалистам, которые создают такие чудесные скальпели . Однако если рука, которая держит скальпель, дрогнет и пациент умрет на операционном столе, виновным считается только сам хирург. Специалист по скальпелям за это ответственности не несет.

 

Едва ли есть необходимость говорить, что это в полной мере относится и к строительству. Ответственности в обычном смысле слова математик не несет: если его решение неверно, катастрофы не произойдет. Но подобная ошибка, допущенная инженером-строителем, может привести и к катастрофе. Инженер как бы оживляет сухую математику и превращает в нечто конкретное и полезное. Истина одна: огромная моральная и материальная ответственность всецело ложится на плечи конструктора, и никто не должен мешать ему держать скальпель так, как он считает нужным.

 

И все же главным в строительстве остается выбор, даже открытие рациональных форм несущих конструкций. Формообразование является тем исключительным процессом, который сочетает в неизвестных пропорциях образно-интуитивное творчество художника или скульптора с конкретным аппаратом точных наук. Этот процесс требует пространственного воображения и абстрактного мышления, логического ума и эмоциональности, развитого конструктивного чутья, определенной интуиции и очень много опыта. А так как наши предшественники имели и хорошее чутье, и интуицию, и строительный опыт, многие из нынешних конструктивных форм уходят своими корнями в далекое прошлое. Но многие из конструктивных форм нашего времени появились в связи с возникновением новых материалов, новых технологий и новых, гораздо более строгих требований. Идеи некоторых из них сознательно или бессознательно заимствованы у мудрой и рациональной природы. Но идеи других являются концентрированным выражением неуловимых процессов инженерного мышления человека.

 

Флюсы играют роль плавня, способствуя переводу пустой породы в шлак. Доменный шлак с содержанием в нем СаБЮз легче чугуна и собирается выше его с последующим выпуском наружу из другого отверстия домны. Он служит ценным сырьем для производства различных строительных материалов.

 

Для выплавки железа из руды разработан доменный процесс с получением в нем чугуна, поступающего затем на выработку стали. Домна — высокая шахтная печь высотой до 30 м, шириной более 6 м. Стенки доменной печи выложены из огнеупорного кирпича, а снаружи кладка заключена в стальной кожух толщиной 20—40 мм. Загрузка рудой, коксом, флюсом послойная, причем обычно железорудный материал переводится в сыпучий агломерат. Схема работы доменной печи ( 19. : в нижней части домны сгорает кокс: С + Ог = СОг. Углекислый газ, поднимаясь, соприкасается с раскаленным коксом и переходит в оксид углерода: СОг + С = 2СО. Еще выше в шахте оксид углерода взаимодействует с раскаленной рудой: СО + Fe203 = 2FeO + СОг и далее: FeO + СО = Fe + СОг. Чугун стекает в нижнюю часть домны. Из домны чугун выпускают через специальное отверстие — летку. Первые капли чугуна образуются при температуре 1250°С и стекают между кусками кокса в горне. Температура чугуна в домне равна 1480—1520 °С. Содержание углерода в чугуне составляет 4—4,5%.

 

Запущенная в действие доменная печь функционирует непрерывно в течение нескольких лет. Руду, кокс и флюсы периодически добавляют через верхнее отверстие (колошник) печи. Также периодически производится выпуск из нее чугуна и шлака — через каждые 4—6 ч. При этом 99—99,8% железа переходит в чугун и только 0,2—1,0% — в шлак. Кроме углерода в составе чугуна присутствуют элементы кремния, марганца, серы, фосфора и пр. По назначению доменные чугуны разделяют на литейный и передельный. Литейный чугун переплавляют, и из него отливают чугунные изделия. Из передельного чугуна получают сталь. Он составляет около 90% всей выплавки чугуна. В нем содержится повышенное количество углерода, 0,3—1,2% Si, 0,2—1,0% Мп, 0,2—1,0% Р, 0,02—0,07% S.

 

Выделяющиеся из домны газы, именуемые колошниковыми, содержат оксид углерода СО, поэтому как сгорающее топливо направляются для обогрева каналов кауперов домны и воздуха в них, который затем поступает в доменную печь и поддерживает в ней горение кокса. Каупер сложен из огнеупорного кирпича и заключен в железный кожух. Имеет нагреваемую насадку.

 

Белый чугун (передельный) содержит весь углерод в химически связанном состоянии в виде карбида железа, именуемого цементитом РезС. При нормальной температуре его структура слагается из двух фаз: феррита и цементита. Белым этот чугун называется потому, что в изломе он имеет матово-белый цвет. Белый чугун имеет высокую твердость и большую хрупкость, вследствие чего его невозможно обрабатывать режущим инструментом. Его применяют, главным образом, для выплавки стали, а также для получения ковкого чугуна.

 

1 Схема работы доменной печи

 

По форме графитовых включений серые чугуны разделяют на обычный серый с пластинчатым графитом, вермикулярный серый, высокопрочный и ковкий. По структуре металлической основы их разделяют на ферритный, ферритно-перлитный и перлитный.

 

Современная доменная печь может выплавлять 12000 т чугуна и выдает около 4000 т шлака, а также до 27000 т колошникового газа в сутки. Кроме процесса, осуществляемого в домне, существует вне-доменное производство железа, что относится к более прогрессивному способу. Он заключается в непосредственном получении железа из руды, минуя доменную печь. На производстве получают очень чистое металлическое железо без применения кокса. С этой целью при глубоком обогащении железных руд изготовляют концентраты с высоким содержанием железа (70—71,8%), почти полностью освобожденные от серы и фосфора. Затем действуют твердым или газообразным восстановителем, получая металлизованные окатыши. Если используют твердый восстановитель — углерод (в виде каменного угля), тогда — с обжигом в шахтной печи, трубчатой печи, реторте. Если используют газообразный восстановитель — природный газ, тогда — с конвертированием газа в невысоких шахтных печах или ретортах. Способы металлизации могут быть и иными — в кипящем слое на решетке. Вследствие относительно низкой температуры бездоменного процесса получаемое железо, обычно спеченное в куски, содержит меньше примесей. Чугуны обладают высокими литейными свойствами, малой пластичностью. Они разделяются на белый и серый.

 

Вермикулярный серый чугун получают путем специальной плавки или обработки с изменением формы графита на волокнистую, червеобразную (вермикулярную), вследствие чего этот чугун обладает лучшими свойствами по сравнению с обычным серым чугуном.

 

Серые чугуны содержат углерод в свободном состоянии в виде графита (100% С); они называются серыми потому, что вследствие наличия в них графита имеют в изломе серый цвет. Содержание С — до 3,8%.

 

Высокопрочный чугун разделяют на марки: ВЧ38-17, ВЧ42-12, ВЧ45-5, ВЧ50-2, ВЧ50-7, ВЧ70-2, ВЧ80-2, ВЧ100-2, ВЧ120- Буквы ВЧ означают высокопрочный чугун, первые числа за ними — минимальный предел прочности при растяжении (в кгс/мм , а последующие числа — минимальное относительное удлинение (в %).

 

Обычный серый чугун получают медленным охлаждением жидкого расплава или аустенита высокоуглеродистых сплавов. В нем частицы графита имеют пластинчатую форму. В зависимости от механических свойств и назначения серый чугун с пластинчатым графитом разделяют на марки: СЧ-25, СЧ-30, СЧ-35, СЧ-40, СЧ-45 (цифры показывают минимальный предел прочности при растяжении, кгс/мм .

 

1 Микроструктура высокопрочного ферритного чугуна с шаровидным графитом (а) (х25 и ковкого ферритного чугуна с хлопьевидным графитом

 

Высокопрочный чугун содержит шаровидный графит ( 19.2, а), получаемый при выплавке с присадкой небольшого количества магния или церия. Благодаря шаровидной форме графита прочность при растяжении и изгибе высокопрочного чугуна значительно выше, чем обычного серого чугуна с пластинчатым графитом.

 

Свойства серых чугунов зависят от свойств металлической основы, вида и количества графитных включений.

 

В некоторых случаях графитные включения полезны благодаря смазывающему действию графита. Такой чугун легче обрабатывается резанием, чем сталь, стружка становится ломкой, когда резец доходит до графитных включений.

 

Ковкий чугун содержит хлопьевидный графит ( 19.2, б). Его получают из белого чугуна путем графитизирующего отжига (томления), при котором происходит распад цементита. Хлопьевидный графит имеет почти равноосную компактную форму. Этот чугун разделяют на марки: КЧЗО-6, КЧЗЗ-8, КЧ35-10, КЧ37-12, КЧ45-6, Ktj50-4, КЧ60-3, КЧ63- В обозначение марки входят буквы КЧ (ковкий чугун), затем число — минимально допустимый предел прочности при растяжении ( кгс/мм , второе число — относительное удлинение О %).

 

В чугуны часто вводят также медь, алюминий, титан, хром, никель. Эти элементы оказывают влияние на процесс графитизации. Подобно сталям такие чугуны называют легированными.

 

Графит имеет низкие показатели механических свойств, и включения его можно условно рассматривать как пустоты и трещины. Чем больше графита, крупнее графитные включения, тем ниже механические свойства чугуна и особенно прочность при растяжении и изгибе. Прочность при сжатии и твердость чугуна зависят в основном от металлической основы и мало отличаются от сталей.

 

Подобно другим железоуглеродным сплавам, чугуны содержат постоянные примеси кремния, марганца, серы и фосфора в больших количествах, чем в сталях. Эти примеси оказывают значительное влияние на графитизацию, структуру и свойства чугунов.

 

Серые чугуны применяют при изготовлении опорных элементов для ферм, железобетонных балок и колонн, тюбингов в метро, при производстве многих других строительных конструкций, а также находят широкое применение в деталях машин, не подвергающихся большим растягивающим напряжениям и ударным нагрузкам. ч

 



Песколовки. Санитарно-химические показатели загрязнения сточных вод. "шлягер" каркаса. Систематизация факторов. Системы водоотведения на подтапливаемых территориях. Склады арматурной стали. Скользящая опалубка.

 

Главная  Материалы 



0.0033