Главная  Свойства 

 

Деформационные свойства иск оптимальной структуры

 

Технология — наука о процессах и способах переработки используемых сырьевых продуктов. Химическая технология — наука о методах и процессах химической переработки сырья в строительные материалы и изделия. Основными элементами технологий являются сырье, энергия и аппаратура (оборудование). Эти элементы тесно взаимосвязаны и обусловлены экономикой, состоянием и уровнем научно-технического потенциала.

 

Сырьем служат исходные вещества или смеси различных веществ (сырьевые смеси), состоящие из двух или большего количества компонентов, которые поступают в химическую переработку для получения определенной разновидности строительного материала. Чаще для этих целей используют природное сырье. Оно добывается из недр земли или из ее поверхностных слоев, являясь в основном неорганическим. В меньших размерах для этих целей применяют органические природные вещества, а также побочные продукты промышленности, сельского хозяйства, лесосек и др.

 

Неорганическое сырье разделяют на неметаллическое и металлическое. При производстве строительных материалов преимущественно применяют неметаллическое, а в металлургии и, в частности, при изготовлении металлических строительных изделий и конструкций — металлическое сырье. Из неметаллического природного сырья чаще используют горные породы и породообразующие минералы, особенно оксиды, силикаты, карбонаты и другие сравнительно однородные по составу и свойствам природные вещества. Из оксидов особо выделяют воду с ее специфическими свойствами, отличающими ее от оксидов металлов и металлоидов. Среди горных пород чаще других используют кремнеземистые — кварцевые пески, песчаники и другие, содержащие в своем составе кремнезем SiOr, глиноземистые — глины, бокситы и другие, в состав которых входит глинозем АЬОз; карбонатные — известняки, мел, магнезиты, мраморы и другие, содержащие углекислый кальций СаСОз; сульфаты и другие кислородные соли, например гипсы, ангидриды.

 

Из органических природных видов сырья следует отметить каменные и бурые угли, нефть, растительные вещества, торф и другие, как правило, неоднородные по своему составу и с содержанием различных соединений углерода вещества (кроме соединений карбонатов и карбидов, не относящихся к органическим веществам).

 

В качестве сырья используют и побочные продукты от других производств: шлаки металлургического процесса, золы от сжигания каменного угля и кокса, горелые породы, отходы горно-обогатительных комбинатов, древесную стружку и опилки, костру и др. Особенно много побочных продуктов (отходов) возникает в технологии минеральных строительных материалов. Динамика изготовления этих материалов позволяет прогнозировать, по данным П.И. Боже-нова, объем отходов в России. Для получения 1 т алюминия требуется перерабатывать до 10 т сырья, то же — при производстве никеля, меди. Или, к примеру, один из ГОКов КМ А в результате обогащения железосодержащих руд ежегодно перерабатывает около 80 млн. т руды, причем более 45 млн. т отходов складируется в отвалах. При обогащении асбестовых руд ежегодно имеется свыше 27 млн. т отходов в виде мелкого щебня, пригодного для строительных целей. Побочные продукты, используемые в строительстве, могут быть не только в твердом, но также в жидком и газообразном состояниях. Проблема их интенсивного использования в стройинду-стрии весьма актуальна. В России в отвалах, по данным на начало 90-х годов, и в хвостохранилищах накопилось до 60 млрд. т техногенных материалов, которые наносят вред окружающей среде в экологическом отношении.

 

Сырьевые природные продукты и техногенное сырье используют в производстве строительных материалов и изделий после их предварительной обработки. Последняя составляет важнейший этап подготовительных работ в технологиях.

 

Наиболее деформационно-устойчивыми являются те конгломераты, которые характеризуются высокими значениями упругих и упруго-эластических деформаций в области определенного интервала температур и реального их перепада в конструкции. Упруго-эластические материалы характеризуются показателями эластичности — процентной долей спадающей деформации за определенный период времени (например, 5, 10, 30, 100 мин или больше) после их разгружения от нагрузки Р, равной по величине предельному напряжению сдвига, или какой-либо иной силовой нагрузки. Показатель эластичности выражается:

 

По величине показателя эластичности ИСК условно разделяют на высокоэластичные, когда спад деформаций наступает быстро, и низкоэластичные, при медленном спаде возникшей под нагрузкой деформации и после ее удаления. Очевидно, что, если материал в конструкции подвержен воздействию циклических нагружений и период между нагружениями (период «отдыха») будет соизмерим с продолжительностью спада низкоэластической деформации, то часть деформации сохраняется до нового цикла. С новым приложением^ нагрузки накапливается величина не спавшей части эластической деформации, и она постепенно может перерасти в необратимую, что создает предпосылки к деструкции материала и разрушению конструкции. В этом смысле любая деформация, в том числе и упругая, влечет за собой предрасположение структуры к повреждению, развитию в ней дефектов и даже микрощелей, к длительному процессу разрушения. Прорастание микрощелей ускоряется по мере увеличения деформаций от многократного повторения (тем более при вибрационном характере нагружения) деформированиях переходом на конечной стадии в опасную трещину и разрушение.

 

От искусственного строительного конгломерата, работающего в несущих конструкциях зданий и сооружений, требуется, чтобы достаточная механическая прочность сочеталась с деформационной устойчивостью, т. е. с его способностью противостоять возникновению и развитию необратимых деформаций (пластических, ползучести) или появлению и росту микротрещин. Деформационная устойчивость проявляется в затухающем характере процесса формирования деформаций, в релаксационной способности материала, с повышением которой более интенсивно снимаются напряжения, возникающие под влиянием внутренних и внешних факторов — эксплуатационных нагрузок и собственного веса конструкции, тепловых и усадочных явлений. Имеются многочисленные примеры, когда конгломератный материал, обладая достаточной прочностью, проверенной по расчетным нагрузкам, преждевременно разрушается вследствие недостаточной деформационной устойчивости, появления и развития необратимых деформаций. Чрезмерно большое время (или период) релаксации, превышающее на несколько десятичных порядков периоды наблюдений или действия нагрузки, влияет на повышение хрупкости материала с возможным образованием трещин.

 

Наименьшей величиной необратимых деформаций обладает вяжущее вещество при с7ф, а слева и справа от минимума располагаются те вяжущие вещества, у которых необратимые деформации быстро возрастают, например при использовании органических связующих материалов.

 

где 8о — деформация сдвига (или другого характера), возникшая за время то под нагрузкой Р; 8т — деформация, оставшаяся после упруго-эластического восстановления в течение выбранного периода времени ti, когда нагрузка была снята (Р = .

 

3.1 Схема изменения деформационных свойств вяжущего вещества и конгломерата с изменением отношения с/ф:

 

Наибольшей упруго-эластической частью деформаций обладают вяжущие вещества при фазовых отношениях, равных с7ф, т. е. когда их структура оптимальная. На графике в системе координат еуэ(с/ф), как и для прочностной зависимости, наблюдается» максимум ( 3.1 .

 

С постепенном добавлением к вяжущему веществу заполнителя (активного или неактивного) изменения деформаций, как и прочностных показателей,; имеют экстремальный характер — минимум у необратимых и максимум у упруго-эластических свойств при фазовом отношении с/ф, при котором показатель прочности был максимальным (см. 3.1 . Чем больше содержится заполнителя в конгломерате, тем меньше величина упруго-эластических свойств и больше необратимых деформаций. Если соответствующие экстремумы соединить огибающей кривой, то, по аналогии с графиком прочности, получится линия, чаще всего в виде касательно к точкам максимумов или .минимумов. Следовательно, все точки фгибающей кривой обусловлены оптимальным составом конгломератов. Каждой точке кривой соответствует максимум прочности и уйруго-элас-тических деформаций, но минимум пластических деформаций. Такое сочетание механических свойств является всегда наиболее желательным в отношении ИСК, используемых в строительных конструкциях зданий и сооружений. Точки на правых и левых ветвях кривых не обладают таким благоприятным сочетанием прочностных и деформативных свойств, а составы в этих точках не являются оптимальными. Структура содержит дискретность среды или повышенную пористость вторичного характера, например, под влиянием испарения части среды.

 

Деформативность и модуль упругости, от которых зависит полная деформационная устойчивость ИСК, непосредственно связаны, как и прочность, со структурой материала. При этом, чем в большей мере структура вяжущего вещества соответствует коагуляцион-ной, тем более типичными являются необратимые деформации, ниже показателя прочности и модуля упругости. С увеличением в вяжущем веществе кристаллизационной фазы возрастает доля упругой или упруго-эластической деформации.

 

1-1 — линия пластических деформаций ет; II—II — линия упруго-эластических деформаций еуэ; —Ш — линия модулей упругости Е, МПа; 1 — вяжущее вещество; 2 — ИСК с нарастающим количеством заполнителя

 

3.1 График соответствия показателей качества ИСК в створах /—/ и II—II заданному уровню III—III

 

Если величину напряжения, соответствующего прочности ИСК, разделить на относительную упругую деформацию, то получаемые значения модулей упругости можно нанести на общий график в системе .Е(с/ф). С увеличением количества заполняющей части в конгломерате и соответственно с увеличением фазового отношения вяжущего вещества в нем снижается величина модуля упругости, т. е. конгломерат становится менее жестким.

 

Обобщая формулы (3. и (3.1 , можно сформулировать общую закономерность механических свойств ИСК.

 

При постоянной структуре характер деформации обусловлен величиной напряжения и продолжительностью напряженного состояния, релаксационной способностью конгломерата. Последняя, в свою очередь, зависит от фазовых соотношений, содержания вяжущего и заполнителя, его разновидности, т. е. от структуры и отдельных структурных элементов.

 

Общие и объективные законы оптимальных структур не изолированы друг от друга, а взаимосвязаны в единую систему, и их обычно используют в совокупности, например при проектировании составов смесей или при разработке новых конгломератных материалов и технологий их изготовления. Важно, чтобы получаемые проектные составы обеспечивали при данной технологии оптимальную структуру, а технические свойства строго соответствовали не только уровню заданных показателей, но и их экстремальным значениям ( 3.1 , т. е. не участку gbc, а экстремуму d. В точках «5» избыток показателя качества должен быть обоснован экономическим расчетом и эксплуатационными данными.

 



Фундаменты на проса дочных грунтах. Кровли из асбестоцементаых плоских и волнистых листов. Кровли из мягких материалов. Крыши бань и саун. Легированные стали и твердые сплавы. Малярные работы. Материалы и изделия из горных пород.

 

Главная  Свойства 



0.0026