Главная  Свойства 

 

Гидравлические вяжущие вещества

 

Гидравлическая известь — продукт умеренного обжига (не до спекания) мергелистых известняков, содержащих от 6 до 20% глинистых примесей. Обычный интервал температур обжига составляет 900—1100°С, что зависит от состава сырья. Продукт обжига содержит не только свободную известь, но и химические соединения с оксидами глины: силикаты 2СаО • Si02, алюминаты 2СаО • АЬОз, ферриты 2СаО • БегОз кальция. Подобно воздушной извести этот продукт составляет комовую гидравлическую известь, которую подвергают помолу в мельницах с получением тонкомолотой негашеной извести. Реже используют другой вариант: комовую известь гасят, а непогасившиеся частицы (силикатов, алюминатов и ферритов) подвергают дополнительному измельчению с последующим смешением погасившейся и непогасившейся частей.

 

При взаимодействии с водой силикаты и алюминаты в извести остаются практически негидратированными. Только при гашении этой извести в тесто постепенно образуются гидросиликаты и гидт роалюминаты кальция, что сопровождается набуханием этих соединений и переходом их в студнеобразное состояние. В зависимости от содержания в извести оксида кальция, по отношению к сумме диоксида кремния, полуторных оксидов алюминия и железа можно условно разделить на сильно гидравлическую и слабо гидравлическую.

 

В настоящее время гидравлическая известь имеет ограниченное применение — для строительных растворов и бетонов невысокой прочности, для кладки в сырых местах (подвалах, каналах), в малоэтажном строительстве и др. Совсем не изготовляется теперь роман-цемент — гидравлическое вяжущее вещество, получавшееся измельчением в тонкий порошок умеренно обожженных (не до спекания) известковых или магнезиальных мергелей при содержании в них глинистых примесей до 25—35%. Эту разновидность цемента полностью вытеснил портландцемент.

 

Портландцемент —продукт тонкого измельчения клинкера, получаемого в результате равномерного обжига до спекания природного сырья (мергеля) или искусственной однородной сырьевой смеси определенного состава, содержащей известняк и глину. В процессе помола клинкера добавляют гипсовый камень в количестве до 3,5% (в пересчете на серный ангидрит). Можно частично заменить сырьевую смесь доменным шлаком, нефелиновым шламом, опокой и др. при условии, что сырье сохраняет необходимый расчетный состав.

 

Природное минеральное сырье в виде известкового мергеля встречается редко, приходится ориентироваться, в основном, на искусственные сырьевые смеси. Как отмечено, они составляются с помощью пород с высоким содержанием углекислого кальция (чистых известняков, мела, известковых туфов, мергелистых известняков и др.) и пород, относящихся к глиноземистому сырью (тяжелые глины, мергелистые глины, глинистый сланец и др.). Исходя из химического состава сырьевой смеси и заданной характеристики состава клинкера вычисляют соотношение между ее компонентами с возможно большей точностью. Вид сырья отражается на выборе оборудования, необходимого для его подготовки, обжига и помола продукта обжига с добавками и с переводом их в состояние однородного мельчайшего порошка — портландцемента.

 

В зависимости от характера приготовления сырьевой смеси различают мокрый, сухой и комбинированный способы производства портландцемента. Каждый из этих способов имеет свои особенности, достоинства и недостатки. В нашей стране на цементных заводах преобладает пока мокрый способ, хотя многие заводы перестраивают технологию на более экономичный по расходу топлива сухой и комбинированный способы.

 

При мокром способе сырьевую смесь измельчают в шаровых мельницах в присутствии большого количества воды (до 36—42% массы сухого вещества) и получают жидкотекучую массу, или суспензию. Ее называют шламом. Из шлам-бассейна 7 масса направляется для обжига во вращающуюся печь Мокрый способ целесообразно использовать при применении в качестве компонентов мела, сырой глины, что понижает расход электроэнергии на измельчение сырьевой смеси.

 

При этом способе облегчается транспортирование и перемешивание сырьевой смеси, однако расход топлива на обжиг ее в печи в 1,5—2 раза больше, чем при сухом способе.

 

При сухом способе готовят сухой порошок смеси исходных материалов (так называемая сырьевая мука), который обжигают во вращающейся печи.

 

Комбинированным называют способ производства, при котором сырьевая смесь для обжига подготавливается в виде гранул. Шлам обезвоживают до влажности 16—18% и полученный «сухарь» (корж) перерабатывают в гранулы на специальных грануляторах. Можно также увлажнять сырьевую муку до 12—15% и из нее изготовлять те же гранулы для обжига.

 

Комбинированный способ, по сравнению с мокрым, дает до 20—30% экономии топлива.

 

При всех способах весьма важно обеспечить бесперебойное поступление сырьевой смеси на обжиг для получения из нее портланд-цементного клинкера.

 

Обжиг сырьевой смеси — центральный этап технологии цемента. Для обжига применяют два типа печей — шахтные и вращающиеся.

 

Для производства цемента мокрым и сухим способами применяют вращающиеся печи длиной от 150 до 230 м, диаметром 5—7 м и короткие длиной от 60 до 95 м с различными запечными устройствами (конвейерный кальцинатор, циклонные теплообменники, холодильники и др.).

 

Вращающуюся печь 8 (см. 9. устанавливают с небольшим уклоном (3—4°) в сторону передвижения сырьевой смеси. Печь медленно (1—2 об/мин) вращается вокруг своей оси в подшипниках. Сырьевая смесь подается в печь автоматическим питателем с верхнего ее конца, а со стороны нижнего конца вдувают топливо — мазут, природный газ или воздушно-угольную смесь. Горячие газы направляются навстречу сырьевой массе. По всей длине вращающейся печи условно выделяют шесть зон, которые различают по основным физическим и химическим процессам, проходящим при нагревании. Внутри печи, облицованной надежной огнеупорной футеровкой, находятся различные внутрипечные устройства для лучшего перемешивания и интенсивного прогрева сырья (фильтр-подогреватели шлама, цепные завесы, металлические и керамические теплообменники).

 

В зоне сушки испаряется свободная вода. Подсушенный материал комкуется и распадается на гранулы. В зоне подогрева при температуре от 200 до 700°С сгорают органические примеси, удаляется химически связанная вода и образуется каолинитовый ангидрит АЬОз • 2S10 Обе эти подготовительные зоны составляют при мокром способе около половины длины печи, при сухом способе — значительно меньше. В зоне кальцинирования при интервале температур от 700 до 1100°С происходит диссоциация карбонатов СаСОз и MgCCh, а также разложение глинистого компонента на оксиды SiCh, AI2O3, РегОз. Они вступают в химическое взаимодействие с СаО. Протекают реакции, связанные с диффузионными процессами в твердом состоянии и с формированием новообразований (искусственных минералов). Вначале образуются однокальциевый алюминат СаО • АЬОз (или в условном обозначении СА), а затем двухкаль-циевый силикат 2СаО • S102 (или в условном обозначении C2S). При температуре, близкой к 1200°С, однокальциевый алюминат, насыщаясь известью, переходит в пентакальциевыи триалюминат 5СаО • ЗАЬОз и затем в трехкальциевый алюминат ЗСаО • АЬОз (или СзА). Оксид железа образует с оксидом кальция двухкальцие-вый феррит 2СаО • Fe203 (или C2F) и четырехкальциевый алюмо-феррит 4СаО • АЬОз • РегОз (или C4AF).

 

При достижении температуры примерно 1300°С все реакции в твердой фазе в основном завершаются, но часть извести остается в свободном состоянии. При дальнейшем повышении температуры (1300—1450°С) происходит частичное плавление сырьевого материала— спекание, чему особенно легко поддаются C4AF, СаО и MgO. Обычное содержание жидкой фазы при температурах спекания составляет 15—30%. В твердом состоянии остается 2СаО • Si02, но и он частично растворяется в этой жидкости, образуя с молекулярно-дисперсной известью трехкальциевый силикат ЗСаО • Si02 (или C3S), поскольку жидкая среда интенсифицирует диффузию молекул оксида кальция. C3S выделяется из жидкой среды вследствие меньшей растворимости в расплаве в виде мельчайших, но способных к росту кристаллов. Это новообразующееся вещество в кристаллическом состоянии является главной составной частью портландцемента. Для его более полного выделения из расплава требуется температура 1450—1500°С со сравнительно длительным сохранением этих тепловых условий. Но даже при самых благоприятных условиях перевод всего двухкальциевого силиката в более устойчивое состояние в виде трехкальциевого силиката затруднителен. Для поддержания необходимой концентрации растворенных в расплаве извести и СагБ потребовались бы весьма высокие температуры и длительный период времени.

 

В сырьевых смесях, насыщенных известью, некоторая часть ее может остаться неусвоенной в процессе обжига. Однако свободной извести в портландцементе не должно быть выше 1—1,5% во избежание неравномерного изменения объема при его твердении.

 

При медленном охлаждении продукта обжига жидкая фаза может почти полностью перейти в продукты кристаллизации, а при очень быстром — в переохлажденную жидкость (стекло). Обычные тепловые режимы в печи благоприятствуют и кристаллизации, и частичному застекловыванию, причем стекло окаймляет отдельные кристаллы.

 

Таким образом, в результате внутренних химических и физико-химических процессов при обжиге сырьевой смеси образуется клинкер, в составе которого имеются сложные соединения как в кристаллическом состоянии — C3S и C2S, так и в стеклообразном — СзА, С5А3, C4AF. Кроме того, присутствуют в нем MgO (главным образом в виде кристаллов периклаза), СаО и R2O — в стекловидной фазе. Некоторые из этих соединений называются искусственными минералами, а именно: соединения C3S и C2S называются соответственно алитом и белитом. Эти минералы не являются химически чистыми компонентами клинкера. Так, например, Сз8 может воспринять некоторое количество алюминатов; C4AF воспринимает немного трехкальциевого алюмината и т. д. Поэтому микроскопический анализ показывает состав, который не совпадает с расчетным составом. По расчетному минералогическому составу портландцементный клинкер можно разделить на группы: алитовый с содержанием алита свыше 55% и белита меньше 20%; белитовый — с содержанием алита меньше 40% и белита — больше 40%; нормальный с содержанием алита 40—55% и белита 20—40% при общем количестве во всех трех случаях СзА + C4AF 20—25% (по массе); алюминатный — при содержании СзА больше 10% и C4AF меньше 15%; алюмоферритный — при содержании СзА меньше 10% и C4AF больше 15% при общем количестве силикатов, равном 75%.

 

Из вращающейся печи клинкер выходит в виде мелких гранул (10—40 мм) зеленовато-серого цвета, после чего его охлаждают воздухом до 100—200°С и направляют на магазинирование. Эта операция выражается в выдерживании клинкера на складе или в силосе для дальнейшего снижения его температуры и частичного самоизмельчения под влиянием тепловых перепадов, гашения свободной извести и других факторов.

 

При сухом способе подготовки сырья декарбонизация известняка обычно выносится за пределы вращающейся печи — в де-карбонизатрры, что позволяет использовать теплоту отходящих газов, ускорить процесс обжига, снизить расход топлива и энергозатрат, металлоемкость оборудования за счет уменьшения длины печи.

 

На основании изложенного можно заключить, что получаемый портландцементный клинкер характеризуется содержанием отдельных оксидов; соотношениями между содержанием главнейших оксидов, выражаемыми в форме модулей и коэффициента насыщения; содержанием клинкерообразующих соединений — клинкерных минералов.

 

Главнейшими оксидами клинкера являются CaO, SiCh, AI2O3, регОз. Среди других оксидов, оказывающих нередко существенное влияние на качество цемента, следует отметить MgO, SO3, N2O, К2О, Ti02, P2O5, МП2О Три последних оксида встречаются в очень малых количествах и при расчетах обычно их не учитывают. Химический состав клинкера характеризуется следующими пределами содержания вышеуказанных оксидов (% по массе): СаО — 62—67%; Si02 — 20—24; AI2O3 — 4—8; Fe206 — 2—51, других оксидов (MgO, SO —1—3%.

 

Указанные модули сравнительно четко характеризуют свойства цемента. Так, например, цементы с высоким силикатным модулем медленно схватываются и твердеют, но с течением времени они достигают весьма высоких прочностей. У таких цементов имеется повышенная стойкость к воздействию минерализованной воды. Однако в период изготовления клинкера с высоким силикатным модулем затрудняются процессы спекания, требуется повышенная температура. Наоборот, низкий силикатный модуль придает сырьевой смеси чрезмерную легкоплавкость и в связи с образованием натеков и кусков на футеровке печи также затрудняет обжиг.

 

Для ориентировки следует учесть, что первый оксид (СаО) составляет 2/3 всего количества; каждый последующий (Si02, A1203, Fe20 — V3 количества предыдущего оксида («Мнемоническое правило»).

 

Цементы с высоким глиноземным модулем, что соответствует повышенному содержанию алюминатов кальция, быстрее схватываются и твердеют. Однако достигнутая в первые сроки прочность почти не возрастает при дальнейшем твердении. Такие цементы менее стойки к воздействию минерализованной воды. При малых значениях глиноземного модуля, т. е. при больших количествах в клинкере оксида железа, цементы медленнее схватываются и твердеют, но дают более высокую конечную прочность. Оксид железа облегчает обжиг клинкера, понижает температуру его спекания.

 

В цементах лимитируется содержание оксида магния (4—4,5%), так как, находясь в свободном состоянии, он может, вследствие медленной и более поздней гидратации, вызывать появление напряжений и трещин в изделиях. Основной характеристикой клинкера служит его минеральный состав, т. е. содержание C3S, C2S, СзА и OAF. Учитывая, что каждому минералу портландцементного клинкера присущи свои особенности ( 9. , которые в той или иной степени влияют на общие свойства цемента, строителям нельзя обращать внимание только на прочностные показатели. По данным С.Д. Окорокова, наибольшей прочностью для всех сроков твердения обладает алит.

 

Наибольшей интенсивностью нарастания прочности отличается СзА, но он, как и C4AF, дает низкую прочность. Последнее место, как по абсолютным показателям прочности, так и по интенсивности роста прочности, занимает белит. Следует отметить, что в длительные периоды времени твердения белит способен набирать высокую прочность/Аналогичным образом ведут себя смеси из этих компонентов. Наибольшую прочность показали двухкомпонентные смеси алита и СзА, наименьшую — алит в смеси с белитом и алит в смеси с C4AF. Увеличение содержания СзА до 15% повышает прочность в первые сроки твердения, но в дальнейшем дает уменьшение прочности. Содержание СзА до 10% дает наилучший постоянный прирост прочности при объединении с OS, хотя отдельно СзА, как отмечалось выше, дает весьма малую прочность. В этом случае положительную роль сыграло присутствие в цементе гипса, который добавлялся при помоле клинкера. С ним образуется при твердении теста комплексная соль — кристаллический гидросульфоалюминат кальция ЗСаО • АЬОз • 3CaS04 * 31 (или 3 Н20, называемая эттрингит. О ней подробнее изложено ниже в связи с коррозией бетона (см.9.1 .

 

При оценке качества и выборе необходимого для конкретных целей цемента, кроме прочностных показателей принимают во внимание деформативные, усадочные, тепловыделение, коррозиестой-кость, морозостойкость и стойкость к внешним условиям работы строительных конструкций и другие свойства. Присутствие искусственных минералов клинкера в различных количествах и сочетаниях вносит свои коррективы в соответствующие показатели цемента.

 

Деформативная способность — удароустойчивость и пластичность — значительно выше у алюмоферритного цемента (20% C4AF), практически лишенного трехкальциевого алюмината (по данным А.Е. Шейкина, СзА было 1%). Алитоалюмоферритный цемент (по данным А.В. Саталкина) дает почти в 2 раза большую предельную растяжимость, чем алюминатный цемент. Содержание СзА сильно уменьшает деформативную способность цемента, увеличивает вероятность трещинообразования. СзА является наиболее хрупким минералом, тогда как C4AF — наименее хрупким. Среднее положение занимают СзБ и C2S. Аналогичное положение занимают минералы и по свойству их твердости.

 

Объемные деформации при твердении теста и бетона также зависят от минерального состава цемента. В.А. Кинд установил, что наибольшую усадку дает СзА, а затем C2S. Алит и алюмоферрит оказывают наименьшее влияние на объемные деформации цемента.

 

Неодинаково у минералов цементного клинкера и тепловыделение, которое влияет на среднюю температуру, развивающуюся при твердении цементного теста. Так, например, наибольшее количество теплоты выделяют Сз8 и СзА, которая на третьем месяце твердения составляет 200—220 кал/г. Третье место занимает C4AF — 100 и последнее место — C2S — 50—60 кал/г. Среднее количество теплоты, выделяемое цементами, колеблется в зависимости от минералогического состава от 50 до 140 кал/г, но в основном оно зависит от суммы C3S и СзА, как наиболее экзотермичных при твердении. По этой причине для бетонных работ в осенне-зимний период желательно использовать цемент с повышенным содержанием алита и СзА, то же — при необходимости сокращения сроков изготовления бетонных и железобетонных изделий, особенно тонкоребристого типа. При изготовлении массивных бетонных конструкций требуется цемент с возможно меньшей экзотермией, например, типа бели-тового.

 

Разрушение портландцемента при сульфатной агрессии связано с наличием в нем алюмината кальция. Следовательно, в этой среде у цемента должен быть повышенным силикатный модуль, уменьшенное содержание СзА, например не более 5%. Против воздействия кислот неустойчивы ни силикаты, ни алюминаты, так как происходит их растворение.

 

Приходится учитывать также, что морозостойкость, выражаемая многократным замораживанием и оттаиванием бетона, насыщенного водой (например, в опорах мостов на уровне воды), понижается при увеличении содержания СзА в цементе.

 

Не являются пассивными ингредиентами щелочные оксиды R2O, когда в бетоне используются заполнители в виде опала — аморфного кремнезема (S1O2, n • Н2О), повышающие диффузию воды в бетон и осмотическое давление в нем вплоть до критического уровня и разрушения строительной конструкции.

 

Портландцемент применяют главным образом для бетонных и железобетонных конструкций в наземных, подземных и подводных сооружениях, в том числе и таких, которые подвержены попеременному замораживанию и оттаиванию. Для растворов они используются только в тех случаях, когда не имеется более дешевых вяжущих веществ — воздушной и гидравлической извести, смешанных цементов и др. В цементных растворах требуется предусмотреть введение водоудерживающих добавок — извести, глины, цемянки, золы, молотого известняка и др. Во всех случаях использования портландцемента непременно учитывают, что имеются и специальные разновидности этого вяжущего вещества — быстротвердеющий, сульфа-тостойкий, пластифицированный и гидрофобный, белый и цветной, тампонажный и др., а также смешанные на основе портландцемента или на основе извести. Кроме того, возможны к применению иные разновидности цементов, которые также необходимо иметь в виду при выборе рационального вяжущего вещества для конкретных строительных целей. Все они в той или иной мере рассмотрены ниже.

 

Здесь же важно отметить, что среди наиболее важных показателей качества портландцемента и других цементов является так называемая активность — показатель предела прочности, получаемый при испытании на осевое сжатие половинок образцов-балочек размером 4 4 16 см, изготовленных из цементного раствора состава 1:3 (по массе) и В/Ц = 0,4, в возрасте 28-суточного твердения При изготовлении цементного раствора используют нормальный песок Привольского месторождения, содержащий не менее 98% кварцевых зерен размером 0,5—0,9 мм. Образцы-балочки изготовляют по стандартной методике. По активности судят о марках цемента.

 

Маркой цемента принято именовать величину его активности, но с округлением до нижнего предела и с учетом его предела прочности при изгибе.

 

Различают следующие марки портландцемента: М- 400, М 500, М 550 и М 60

 

Допускается ускоренное испытание на определение активности, например в возрасте 3 или 7 суток, но с последующим уточнением данных применительно к нормальному 28-суточному возрасту испытания образцов.

 

Кроме активности по стандарту, желательно, в соответствии с теорией ИСК и ее законом конгруэнции (см. 3. , определять еще расчетную активность портландцемента (и других видов вяжущего вещества). Под расчетной активностью подразумевается предел прочности при сжатии (или при других видах напряженного состояния) цементного камня оптимальной структуры, полученного и испытанного с учетом реальных условий ИСК на основе этого цемента. Зафиксированная величина активности называется расчетной потому, что входит в формулы для расчета соответствующей прочности бетона оптимальной структуры. Стандартная же активность является некоторой условной, нужной для товарной маркировки цемента, т. е. для сравнения его с другими цементами. В техническую характеристику портландцемента входят такие показатели (в количественных значениях): тонкость помола, плотность, сроки схватывания, равномерность изменения объема (по данным визуального осмотра образцов). Все они обусловлены стандартными методиками их определения.

 

Тонкость помола оценивают по количеству цемента, прошедшему через сито с сеткой № 008 (размер ячейки в свету 0,08 мм); должно просеиваться не менее 85% массы просеиваемой пробы. Значимой величиной в оценке тонкости помола служит удельная поверхность частиц цемента, определяемая с помощью поверхно-стомера. Средний размер частиц цемента составляет 15—20 мкм, что соответствует удельной поверхности, равной 2500—3000 см2/г.

 

Плотность портландцемента без минеральных добавок равна 3,1 г/см3, насыпная плотность в среднем — 1300 кг/м3.

 

Сроки схватывания — начало не ранее 45 мин, конец — не позднее 10 ч от начала затворения цемента водой в тесто нормальной густоты. Под последней понимается количество воды, в % по массе, которое потребовалось ввести, чтобы пестик в приборе Вика мог опуститься в кольцо с тестом на глубину, при которой он не доходит до дна на 5—7 мм. Нормальная густота портландцемента обычно находится в пределах от 22 до 28%. В цементе, содержащем активные минеральные добавки, нормальная густота может возрастать до 32—35%.

 

Равномерность изменения объема, при своей простоте определения, является важной характеристикой цемента. Она выражается в визуальной оценке состояния образцов-лепешек из теста нормальной густоты в возрасте 24 ч, прошедших трехчасовое кипячение в воде. По стандарту образцы не должны деформироваться или иметь радиальные трещины. Эти дефекты возможны при гидратации свободной извести СаО или периклаза MgO, оказавшихся в цементе сверх допустимого предела и вызвавших местные деформации испытуемых образцов.

 

Все необходимые сведения о технических свойствах цемента со общаются потребителям, получающим цемент с завода, в виде паспорта на поставляемую партию цемента. Размер партии может составлять от 300 до 400 т, но паспорт относится обычно к партии цемента в 200—300 т.

 

Разновидности портландцемента. БыстротвердеюЩий портландцемент, как уже отмечалось, получается в основном за счет повышенного содержания в клинкере быстротвердеющих минералов C3S и СзА, т. е. чтобы цемент был алитоалюминатным. Желательное содержание этих минералов находится в пределах: C3S — 50—60%, СзА — 8—12%, а сумма их—не менее 65%. Повышенное содержание этих соединений должно сопровождаться и повышенным содержанием двуводного гипса, вводимого при помоле клинкера. Гипсового камня принимается такое количество, которое может быть химически связано в твердеющем портландцементом тесте в Течение первых 24 ч после его затворения, что обычно составляет около 3% (2—5%).

 

Для ускорения процессов твердения необходим более тонкий и однородный помол сырьевой смеси, использование исходных материалов по возможности с аморфной структурой, поддержание повышенных температур при обжиге с добавлением в смесь минерализаторов (например, плавикового шпата), более быстрое охлаждение клинкера, выходящего из зоны спекания, более тонкий помол клинкера (до 3500—4000 см2/г). Скорость нарастания прочности цементного камня можно увеличить также путем введения химической добавки — хлористого кальция, соляной кислоты или других веществ аналогичного действия, вводимых в малых дозах.

 

Производство быстротвердеющего портландцемента началось в нашей стране с 1955 г., что позволило снизить расход цемента в бетоне и уменьшить энергозатраты на теплообработку изделий в связи с укороченной ее продолжительностью.

 

Сверхбыстротвердеющий высокопрочный портландцемент (СБТЦ) отличается от быстротвердеющего (БТЦ) значительно более высокой ранней прочностью. Так, например, через 6 ч после за-творения водой фиксируется прочность в 10 МПа, что в два раза больше получаемой при твердении теста на основе СБТЦ. При использовании СБТЦ можно через 1—4 ч получать прочность бетона, достаточную для распалубки изделий, расход цемента снизить до 20%, значительно сократить энергозатраты на теплообработку изделий.

 

В технологический период при изготовлении СБТЦ в сырьевую смесь вводят галогеносодержащие вещества, например фторид кальция, увеличивают в смеси содержание алюминатов.

 

В ряду быстротвердеющих и сверхбыстротвердеющих цементов возможно по своим свойствам расположить еще особобыстротвер-деющий цемент. Он является высокопрочным и в возрасте 1 сутки имеет предел прочности при сжатии 20—25 МПа. В нем 65—68% C3S, СзА до 8%. Его удельная поверхность — свыше 4000— 4500см2/г.

 

Сульфатостойкий портландцемент получают при совместном тонком помоле клинкера специального состава (с малым содержанием алюминатов кальция) с гипсом до 8%. Он и его разновидности имеют строго установленный химический состав: трехкальциевого силиката C3S — не более 50%, трехкальциевого алюмината СзА — не более 5%, а сумма СзА и C4AF — не выше 22%, оксида магния не более 5%.

 

Сульфатостойкий портландцемент имеет марку 400, не должен содержать минеральных добавок, если они снижают морозостойкость бетонов на основе этих вяжущих веществ. Разновидности этого цемента: сульфатостойкий портландцемент с минеральными добавками марок 400 и 500,1 сульфатостойкий шлакопортландцемент марок 300 и 400 и пуццолановый портландцемент марок 300 и 40 Их применяют при строительстве подземных и подводных частей сооружений, подвергающихся сульфатной коррозии.

 

Обычный сульфатоетойкий портландцемент применяют для изготовления бетонов, работающих в условиях сульфатной среды, например в морской воде, а также для бетонов повышенной морозостойкости.

 

Портландцементы с поверхностно-активными добавками. К ним относятся пластифицированный и гидрофобный.

 

Пластифицированный портландцемент — продукт тонкого измельчения портландцементного клинкера с двуводным гипсом (3—5%) и с добавлением при помоле около 0,25% сульфидно-дрожжевой бражки (СДБ) или другой пластифицирующей добавки. Эти добавки, адсорбируясь на поверхности частиц цемента, повышают смачиваемость цемента водой, не препятствуя их взаимодействию. Добавки уменьшают трение между зернами цемента, а в бетонных смесях — и между зернами заполнителя, вследствие чего повышают их подвижность, позволяют уменьшить расход цемента в бетоне на 5—10%.

 

Гидрофобный портландцемент — продукт тонкого измельчения портландцементного клинкера с двуводным гипсом (3—5%) и с добавлением при помоле 0,1—0,2% гидрофобизирующих добавок — мылонафта, синтетических жирных кислот, асидола. Синтетические жирные кислоты, их соли (мыла) и другие частицы, адсорбируясь на поверхности зерен цемента, образуют тончайшие водоотталкивающие пленки, уменьшающие смачиваемость цемента водой. В результате гидрофобные цементы могут длительное время пребывать на воздухе с повышенной влажностью без потери своей активности.

 

При перемешивании бетонной смеси целостность гидрофобной пленки нарушается, после чего цемент беспрепятственно взаимодействует с водой. Остающиеся добавки в теле бетона улучшают его качество, например повышая морозостойкость, сопротивляемость агрессивной среде.

 

Пластифицированный и гидрофобный портландцементы применяют наравне с обычным портландцементом для бетонных и железобетонных наземных, подземных и подводных конструкций, в том числе работающих в условиях циклического замораживания или увлажнения.

 

Белый и цветные портландцементы. Сырьем для заводского производства белого портландцемента служат чистые известняки и белые глины. Сырьевую смесь обжигают на беззольном (газовом) топливе. Для повышения белизны клинкер обжигают в восстановительной среде и отбеливают путем быстрого охлаждения водой. Белый цемент должен содержать БегОз не более 0,35—0,5%. При помо ле особенно тщательно предохраняют цемент от попадания в частиц железа или оксидов железа, которые нарушают его белизну. По степени белизны белый портландцемент делится на три сорта: цемент 1-го сорта имеет коэффициент отражения не ниже 80%; 2-го сорта — не ниже 75% и 3-го сорта — не ниже 68%. Степень белизны определяют фотометром типа ФМ-5 За эталон принимают сернокислый барий BaS04: он имеет коэффициент отражения не менее 95%. Следует отметить, что коэффициент отражения портландцемента обычного составляет 40%.

 

Цветные цементы получают путем совместного помола клинкера белого портландцемента со щелочестойкими и светостойкими пигментами. Пигментов добавляют не более 15% минеральных и не более 0,3%) органических. Для получения цветных цементов желтого, розового, красного, коричневого, зеленого, голубого и черного цветов используют пигменты природные (охру, железный сурик и др.) и искусственные (оксид хрома, мумию, оксид марганца — пиролюзит).

 

По способу П.И. Боженова можно получать цветные клинкеры, добавляя к сырьевой смеси 0,05—0,1% соединений хрома, марганца, кобальта, никеля и др. При помоле таких клинкеров получают цветные цементы с более интенсивной окраской.

 

Белый и цветные портландцемента выпускают марок М 400 и М 50 Их применяют для архитектурно-отделочных работ, облицовочного слоя панелей и блоков, скульптурных работ, цветных разделительных полос на автомагистралях и т. п.

 

Портландцемент дорожный получают совместным помолом портландцементного клинкера, в котором повышенное содержание C3S, но ограниченное СзА — до 8%, а также гипса — до 3,5% по БОз. Пластифицирующих добавок при помоле добавляют не более 0,3%. Присутствие гранулированного доменного шлака допускается до 15% массы цемента. Выпускается этот цемент двух марок: 400 и 50 Начало схватывания не ранее 2 ч после затворения водой.

 

Дорожный портландцемент предназначен для устройства бетонных покрытий автомагистралей, придавая им повышенную морозостойкость, деформативность, прочность при изгибе и ударной нагрузке, а также низкие показатели истираемости и усадки.

 

Расширяющийся портландцемент (РПЦ) — гидравлическое вяжущее вещество, получаемое в процессе тонкого измельчения смеси, состоящей из портландцементного клинкера (60%), глиноземистого клинкера или шлака (6%), доменного гранулированного шлака или Другой активной минеральной добавки (25%) и гипса (9%). РПЦ характеризуется высокой плотностью, быстрым твердением при кратковременном пропаривании, водонепроницаемостью до 1,2 МПа и более, а также повышенной морозостойкостью цементного камня. Главным достоинством этого цемента служит способность цементного теста в начальный период твердения переходить в цементный

 

камень с линейным расширением 0,3—0,4% при постоянном увлажнении (в течение трех суток).

 

Применяют РПЦ, как и другие цементы с аналогичным качеством, при заделке в целях гидроизоляции швов тюбингов, раструбных труб, стыков и трещин в бетонных и железобетонных конструкциях, в производстве сборных бетонных изделий с сокращением j времени их тепловой обработки.

 

Алинитовый цемент — одна из новых разновидностей быстрот-вердеющих портландцементов. В качестве сырьевых материалов для его производства применяют смесь известняка, глинистого компонента и добавки раствора хлористого кальция. Для получения клинкера сырьевую смесь обжигают при температуре 1050—1150 °С вместо 1450—1500 °С при получении клинкера портландцемента. Полученный клинкер измельчают совместно с добавкой двуводного гипса в количестве 2,5—3,5% массы цемента в расчете на SO Допускается введение 10—30% активных минеральных добавок или 30—50% доменного гранулированного шлака.

 

В составе клинкера преобладают минералы — алинит (хлорси-ликат кальция), являющийся основным, поскольку его содержится 60—80% по массе, а также хлоралюминат кальция.

 

Активность алинитового цемента составляет 40—60 МПа.

 

При производстве алинитового цемента обеспечивается по сравнению с портландцементом более низкий (на 15—20%) расход топ-Я лива при обжиге сырьевой смеси. Но имеются и недостатки: бетоны, Ц приготовленные на алинитовом цементе, имеют пониженную моро-Щ зостойкость, а стальная арматура в железобетоне на основе такого цемента корродирует под влиянием ионов хлора. Отрицательные явления в значительной мере устраняются различными мероприятиями.

 

Механоактивированный портландцемент начали выпускать на отдельных заводах по своеобразной технологии с целью улучшения его строительно-технических характеристик, а также увеличения его массы при сохранении исходной активности. В результате механо-химической активации повышается не только дисперсность материала, но и реакционная способность, выражаемая в приросте гидравлической активности на 30—40 МПа. Последнее означает возможную экономию до 70% цементного клинкера в связи с его заменой минеральными добавками, например горной кремнесодержащей породой, песком, золошлаковым отходом и др. Обычно реализуется одна из двух возможных технологических схем производства меха-ноактивированного портландцемента: по 1-му варианту — 1 т цемента марки 500, добавка с получением после активации 1—4 т зо-лошлаковых отходов, песка или другого минерального вещества с выходом на конечной операции 2—5 т вяжущего вещества марки 300—500 и возможного получения широкой номенклатуры сухих смесей для строительных и отделочных работ; по 2-му варианту — 1 т цемента марки 500 с добавкой механохимической обработки вещества, с получением 1 т цемента марки 700—800, и, соответственно, качественно новых технических свойств цемента в бетонах и растворах, в том числе при получении искусственного литого камня (фундаментного, тротуарного, декоративного и др.).

 

Глиноземистый цемент и его разновидности. К клинкеросодержа-щим гидравлическим вяжущим веществам, кроме портландцемента и его разновидностей, относится и глиноземистый цемент со своими разновидностями. Однако для его получения требуется клинкер иной, а не портландцементный. Этот цемент является бысТротверде-ющим вяжущим веществом, набирающим через сутки твердения прочность, которая составляет свыше 85% его марочной прочности. Он получается обжигом до плавления, и тогда сырьевая смесь в виде брикетов обжигается в электропечах или вагранках при температуре 1400—1500°С. Обжиг может быть до спекания, и тогда клинкер получают во вращающихся печах при температуре 1200—1300°С. За обжигом следует тонкий помол продукта обжига — сплава или клинкера. От других цементов глиноземистый отличается высоким, преобладающим содержанием в клинкере алюминатов кальция.

 

К основным видам сырья для получения глиноземистого цемента относятся боксит АЬОз • яШО и известняк. Но боксит — сравнительно редко встречающаяся горная порода и, к тому же, весьма ценная для получения металлического алюминия. Поэтому используют некоторые промышленные отходы, богатые глиноземом (АЬОз). В нашей стране разработан способ производства этого цемента путем плавки в доменной печи бокситовой железной руды с добавлением известняка или Извести и металлической стружки или лома. В такой домне кроме чугуна получают шлам температурой 1550—1600°С, который и является глиноземистым клинкером, поступающим на помол его в цемент.

 

Глиноземистый цемент представлен следующими оксидами ( %): А120з — 55; СаО — 45; SiOz — 5—10; Fe203 — 5—15 (включая закись железа). Основным компонентом цемента является однокаль-Циевый алюминат СА, который в дальнейшем при взаимодействии с водой характеризуется нормальным сроком схватывания (начало не менее 30 мин), высокой прочностью цементного камня в ранние сроки твердения. При повышенном содержании СаО возникает при обжиге С5Аз или С12А7, а при пониженном — САг. Чтобы не было Уменьшения интенсивности нарастания прочности, стремятся ограничить содержание C2S, поэтому должен быть минимальный предел содержания кремнезема в сырье. Не приносят пользу в сырье окси-Ды и закиси железа, скорее — наоборот. Вовсе нежелательно присутствие MgO и ТЮг, так как, отнимая часть оксида алюминия и оксида кальция, они дают негидратирующиеся, т. е. балластные, соединения.

 

Помол клинкера производят до очень высокой дисперсности цемента: больше 90% должно проходить сквозь сито № 008 с сеткой 5476 отв/см Однако размалывается в порошок он труднее портлан-дцеМентного клинкера, с большим расходом электроэнергии на работу мельницы.

 

Глиноземистый цемент выпускают трех марок: 400, 500 и 600, определенных в трехсуточном возрасте, но уже через одни сутки образцы набирают прочность при сжатии, соответственно, не менее 23, 28 и 33 МПа. Твердение цементного теста (и в изделиях) сопровождается выделением значительного количества теплоты (250—370 кДж/кг). Это хорошо при зимнем бетонировании, но в массивных сооружениях, особенно при работах в летнее время, могут возникать местные перегревы и неравномерное деформирование. Изделия на основе глиноземистого цемента при твердении нельзя нагревать (например, пропаривать), так как с повышение температуры бетона его прочность быстро падает (в 2—3 раза) связи с образованием в цементном камне малопрочных соедине ний— так называемого кубического трехкальциевого гидроалюми ната ЗСаО • АЬОз • 6ШО (СзАШ). Для устранения этого явления, п предложению П.П. Будникова, при помоле клинкера в мельницу до бавляют природный или обожженный ангидрит CaS0 Получае мый ангидрито-глиноземистый цемент быстро твердеет не тольк при нормальной температуре (15—20°С), но и при повышенной (30—40°С и выше), приобретая высокую прочность. Его целесообразно использовать при всех срочных строительных работах, особенно, если отвердевание конструкций происходит при повышенных температурах. При температурах же до 25—30°С весьма эффективен глиноземистый цемент, обеспечивается высокая прочность железобетонных изделий в начальные сроки твердения, повышенная морозостойкость, высокая коррозионная стойкость при воздействии сульфатных сред, морской воды. На основе глиноземистого цемента изготовляется расширяющийся водонепроницаемый цемент, жаростойкие растворы и бетоны. Однако следует отметить, что в связи с заметным истощением запасов высокосортных бокситов качество глиноземистого цемента нередко заметно снижается, в частности, за счет повышенного содержания в них Si02 и других микропримесей с возможным образованием геленита. В последние годы появились работы, направленные на получение так называемого модифицированного глиноземистого цемента. Для его изготовления используют бокситы, загрязненные примесями, но в сырьевые смеси вводят полезные добавки, повышающие содержание химических новообразований. В результате новые модифицированные смеси оказались более благоприятными для поддержания улучшенного качества. В небольших размерах применяют добавки с гарантией высокого качества готовой продукции (из работ С.И. Иващенко).

 

Расширяющийся водонепроницаемый цемент получают способом тщательного перемешивания (или совместного помола) глиноземистого цемента (около 70%), гипса (около 20%) и молотого высокоосновного гидроалюмината кальция (примерно 10%). Он является бы-стросхватывающимся и быстротвердеющим гидравлическим вяжущим веществом. Важный его компонент — высокоосновный гидроалюминат кальция — изготовляют отдельно путем совместного помола смеси глиноземистого цемента и извести-пушонки, взятых в равных отношениях. Полученную смесь обрабатывают в гип-соварочном котле и высушивают. Готовый продукт С4АН13 — требуемый компонент (10—11%) данного цемента.

 

Линейное расширение твердеющего цемента в состоянии теста нормальной густоты при воздушном хранении образцов составляет в возрасте 1 суток не менее 0,05%, в возрасте 28 суток г не менее 0,02%; то же при погружении образцов в воду: через 1 ч в возрасте 1 суток не менее 0,2%. Предел прочности при сжатии кубиков размером 20 20 20 мм цементного теста нормальной густоты через 3 суток — не менее 30, через 28 суток — не менее 50 МПа. Начало схватывания — не ранее 4 мин, конец — не позднее 15 мин от начала затворения теста. Эти сроки можно замедлять добавкой ССБ, буры и др. Данный цемент используют при восстановлении железобетонных конструкций, для гидроизоляции подземных сооружений, заделки трещин разного рода, зачеканки стыков водопроводных труб и т. п.

 

Гипсоглиноземистый расширяющийся цемент (ГГРЦ) — гидравлическое быстротвердеющее вещество, получаемое совместным помолом высокоглиноземистого шлака с двуводным сернокислым кальцием (не более 30%). Гипсоглиноземистый расширяющийся цемент имеет начало схватывания не ранее 20 мин и конец схватывания не позднее 4 ч от начала затворения, что выгодно отличает его от водонепроницаемого расширяющегося цемента. При необходимости могут использоваться замедлители сроков схватывания — ССБ, бура, уксусная кислота и другие добавки. Линейное расширение твердеющего цемента в состоянии теста нормальной густоты составляет при водно-воздушном твердении не менее 0,1%, а при водном твердении — не менее 0,15% через одни сутки. Без влажности, т. е. на воздухе, этот цемент не расширяется и даже дает усадку. Предел прочности при сжатии через 1 сутки 35 МПа для марки 400 и 45 МПа для марки 50 Указанные марки соответствуют трехдневному возрасту этого цемента. Деформативная способность ГГРЦ несколько выше, чем у глиноземистого цемента. Он предназначен для получения безусадочных и расширяющихся водонепроницаемых бетонов, гидроизоляционных штукатурных растворов, для заделки стыков сборных бетонных и железобетонных конструкций, при бурении скважин и т. п. Обладает морозостойкостью, атмосфе-роустойчивостью в растворах и бетонах, изготовляемых на его основе; нельзя применять его при работе конструкций при температурах выше 80°С, так как постепенно разрушается важный кристаллический компонент цементного камня — эттрингит, содержащий в себе много кристаллизационной воды.

 

Напрягающий цемент (НЦ) — быстросхватывающееся, быстрот-вердеющее, расширяющееся вяжущее вещество, получаемое тщательным смещением в определенной дозировке при совместном помоле силикатного, алюминатного и сульфатного компонентов. Силикатным компонентом (65—75%) служит портландцемент или его клинкер; алюминатным (18—20%) — глиноземистый цемент или его клй*нкер, в качестве которого может быть и глиноземистый шлак; сульфатным компонентом (6—15%), в пересчете на SCh, является строительный гипс или природный гипсовый камень.

 

Начало схватывания должно быть не ранее 2 мин и конец схватывания не ранее 6 мин. При использовании в качестве сульфатного компонента природного гипсового камня начало схватывания НЦ наступает не ранее 8 мин и конец — не менее 15 мин. С помощью добавок можно замедлить сроки схватывания. Удельная поверхность НЦ — не менее 3500 см2/г.

 

НЦ обладает способностью к значительному расширению (до 4%) при твердении в состоянии цементного теста нормальной густоты. В железобетоне НЦ создает после отвердевания в арматуре (независимо от ее расположения) предварительное напряжение. Этим свойством как функцией химической энергии цемента пользуются при изготовлении предварительно напряженных железобетонных конструкций вместо более сложного механического или термического напряжения арматуры. С учетом величины достигаемой энергии самонапряжения, т. е. удельного давления в МПа, развиваемого при твердении НЦ в условиях ограничения свободного расширения, выделяют его разновидности НЦ-2, НЦ-4 и НЦ- Напрягающий цемент отличается также повышенными показателями водо- и газонепроницаемости, морозостойкости, прочности при растяжении и изгибе. Марки цемента — 400 и 500; определяются испытанием образцов-балочек из цементно-песчаного раствора 1:1 в возрасте 28 суток.

 

Напрягающий цемент применяют для изготовления конструкций из самонапряженного железобетона, а также для гидроизоляции шахт, подвалов, зачеканки швов, в спортивных сооружениях, подземных гаражах, полах общественных и производственных зданий и других объектах.

 

Гидравлическая известь должна обладать свойством равномерно изменять объем. Размолотая известь не должна давать более 15% остатка на сите № 00 В гашеной извести непогасившихся зерен должно быть не более 15% (по массе).

 

Гидравлическую известь получают путем обжига не до спекания мергелистых известняков, содержащих 6—20% глинистых примесей, в шахтных (см. или вращающихся печах при температуре 900 — 1000°. После обжига производят помол или гашение извести в порошок (пушонку).

 

Растворы на гидравлической извести помещать в воду сразу после изготовления нельзя, так как они могут размываться и терять прочность. В начале твердения растворы должны находиться в течение 7—21 дня на воздухе, после чего их можно увлажнять. Предел прочности на сжатие образцов-кубиков, изготовленных из раствора извести с песком состава 1 : 3 (по массе), в возрасте 28 дней комбинированного хранения (7 суток во влажнбм воздухе и 21 сутки в воде) должен быть не менее 0,20 кН/см2.

 



Фундаменты на проса дочных грунтах. Кровли из асбестоцементаых плоских и волнистых листов. Кровли из мягких материалов. Крыши бань и саун. Легированные стали и твердые сплавы. Малярные работы. Материалы и изделия из горных пород.

 

Главная  Свойства 



0.0018