Главная Свойства
Конструктивная форма № 1 Под конструированием водоотводящей сети понимают строгое выполнение определенных инженерных решений, обеспечивающих безаварийную надежную работу всех ее сооружений в любой момент времени. Основное требование — обеспечение в водоотводящей сети благоприятных гидравлических условий движения потока сточных вод, исключающих заиливание трубопроводов. Это требование заключается в обеспечении самоочищающих скоростей на всех интервалах водоотводящей сети и во всех сооружениях. Между колодцами трубопроводы прокладывают строго прямолинейно. Точность укладки труб по заданной отметке составляет ± 3 мм. В местах изменения направления трубопровода в плане, изменения его уклона, присоединения к нему боковых веток, а также на прямолинейных участках сети через 40-150 м следует устраивать смотровые колодцы. Соединения самотечных трубопроводов в колодцах выполняют в виде открытых лотков полукруглой формы. На поворотах лотки в пределах колодца выполняют по кривым с радиусом не менее диаметра трубы. На крупных коллекторах с диаметром от 1200 мм радиус кривой поворота принимают не менее пяти диаметров и предусматривают смотровые колодцы в начале и конце кривой. Угол поворота кривой потока в трубопроводах или при соединениях боковых веток не должен превышать 90°. 3.1 Схемы поворота трубопровода (а) и присоединения боковых веток (б): 1 дополнительная ветка Любой угол поворота трубопровода в плане может быть выполнен при устройстве в колодце перепада — стояка. В этом случае поток совершает два поворота под углом 90°: первый — с горизонтального направления на вертикальное; второй — с вертикального на новое горизонтальное направление. Расчет трубопровода в направлении движения воды даже при увеличении расхода может привести к уменьшению диаметра. Это происходит при резком увеличении уклона трубопровода и соответственно увеличении его пропускной способности. Допускается уменьшение диаметра на один размер по сортаменту при диаметре трубопровода до 300 мм и на два размера — при большем диаметре. Соединения труб в этом случае выполняют по лоткам труб. При значительном увеличении уклона трубопровода возможно устройство быстротока, оборудованного водобойным колодцем для затопления гидравлического прыжка и гашения энергии потока. При большой разнице в заглублении труб соединение выполняют либо путем устройства перепадного колодца перед присоединением на боковой ветке (см. 3.16, а), либо прокладки предыдущего перед присоединением участка трубопровода на боковой ветке с увеличенным уклоном ( 3.16, б). 3.1 Продольные профили боковых веток с перепадным колодцем (а) и участком с повышенным уклоном (б): 1 перепадной колодец; 2 боковая ветка; 3 коллектор Расчетная скорость в боковом присоединении не должна быть больше, чем в основном коллекторе V В местах сопряжения потоков не следует допускать встречных течений, ударов струй и подпоров. Боковые присоединения не должны тормозить течение в основном потоке. Наполнения в присоединяемых трубах должны быть выровнены по уровню воды или быть выше, чем в основном коллекторе. Трубы малых размеров присоединяют к коллекторам больших размеров таким образом, чтобы лоток малого диаметра трубы находился на одном уровне с поверхностью воды при расчетном заполнении в трубе большого диаметра. Допускается присоединение внутриквартальных сетей к уличным коллекторам без устройства смотрового колодца (бесколодезное присоединение) при условии, что длина соединительной ветки от контрольного колодца на превышает 15 м, и скорость движения сточных вод в коллекторе свыше 1 м/с. Конструкции присоединения без колодцев не должны вызывать изменения очертания трубопровода основного коллектора и создавать препятствия для прохода оборудования при прочистке сети. На стадии разработки рабочих чертежей решается вопрос о способе прокладки трубопроводов в пределах проездов. Их расположение обязательно должно увязываться с положением других подземных и наземных сооружений. Расположение трубопроводов должно обеспечивать надежность функционирования, доступность при ремонтных работах, соблюдение санитарных условий и требований охраны окружающей природной среды. При ширине проездов более 30 м целесообразно строить два трубопровода по краям проездов. При этом обеспечивается сокращение протяженности соединительных веток от внутриквартальных сетей. При параллельной прокладке самотечных трубопроводов на одном уровне с водопроводами расстояние между стенками труб должно быть не менее 1,5 м при водопроводах диаметром до 200 мм и не менее 3 м — большего диаметра. При пересечении с водопроводной сетью самотечные трубопроводы укладывают ниже не менее чем на 0,4 м. Это условие может не соблюдаться, если водопровод выполняется из металлических труб в футлярах. При прокладке самотечных трубопроводов параллельно газопроводам расстояние в плане между стенками труб должно быть не менее для газопроводов различного давления: низкого (до 5кПа) — 1м, среднего (0,3 МПа) — 1,5м, высокого (0,3-0,6 МПа) — 2м, высокого (0,6-1,2 МПа) — 5м. На 3.17 показана схема оптимального размещения подземных сетей и сооружений. В городах и на промышленных предприятиях со сложным хозяйством инженерные сети различного назначения прокладывают совмещенным способом в проходных тоннелях. В этом случае уклон тоннеля определяется уклоном, необходимым для надежной работы самотечной водоотводящей сети. 3.1 Схема размещения подземных коммуникаций: ТС тепловая сеть; КТ кабель трамваев; Э электросеть; Т телефон; Г газопровод; В водопровод; К трубопровод водоотводящей сети; Д дождеприемники; ДК водостоки Неоднозначно отношение специалистов к устройству аварийных выпусков на водоотводящей сети. Назначение их заключается в обеспечении быстрых аварийно-восстановительных работ при катастрофических повреждениях на водоотводящей сети. Как показал опыт эксплуатации, отсутствие аварийных выпусков, при недостаточной надежности системы водоотведения, становится причиной неорганизованного отведения сточных вод по территории населенных мест и вывода из строя оборудования, что требует значительного времени на его замену. Аварийный выпуск следует рассматривать как необходимый элемент обеспечения быстрого выполнения аварийно-восстановительных работ. При дальнейшем развитии и повышении надежности необходимо развивать технологию водоотведения путем строительства аварийно регулирующих резервуаров, дополнительных дублирующих водоводов, перемычек, обеспечивающих переключение потоков стоков по другим направлениям. При этом следует иметь в виду, что устройство других, более надежных средств, кроме аварийных выпусков, это дорогостоящие сооружения, использование которых реально лишь при возникновении аварийных ситуаций, вероятность которых мала. Авторы этой конструктивной формы неизвестны. Если в этом случае вообще говорить об авторстве, то следует обратиться к далекой доисторической эпохе и предположить, что первые анонимные реализации этой идеи имели вид необработанных древесных стволов. Следующей ступенью были отесанные с четырех сторон бревна, которые в таком виде дошли до наших дней и до сих пор применяются во временных сооружениях для перекрытия пролетов до 6—7 м. Этот явный атавизм мирно уживается с вершинами в развитии, балочных конструкций, одну из которых представляет, например, стальной балочный мост на р. Саве в Белграде. Длина его центрального пролета 260 м! Формообразование — это исключительно сложный процесс, который предполагает высокое развитие как абстрактного мышления математика, так и образно-пространственного мышления художника. Параллельно приходится решать десятки проблем самого различного характера — конструктивные, статические, технологические. Балка может представляться простой только дилетанту. На самом же деле, если бы требовалось создать обобщающий символ строительных конструктивных форм, первым претендентом могла бы быть добрая старая балка. Она словно существует вне времени. Однако нынешний отрезок ее бытия характеризуется переплетением всех проблем и тенденций мирового строительства. Самой простой, распространенной (и самой старой) конструктивной формой является балка. Это, без сомнения, наиболее доступный способ перекрыть определенные расстояния между опорами, а в большинстве случаев и самый функциональный. Так или иначе, но все конструкции перекрытия плоские, все конструкции кровли плоские или почти плоские, путевое полотно мостов тоже плоское. Логично, что несущая система тоже будет развиваться плоскостно, чтобы излишне не усложнять дело. Начнем с типа опирания. Об изгибе, этой наиболее острой форме проявления конфликта между нагрузкой и конструкцией, мы уже говорили, но касались лишь эффекта изгиба в одном конкретном сечении балки. Однако гораздо большее значение имеет то, как распределяются изгибающие моменты по длине балки, т. е. какова их величина не только в одном, а во всех сечениях на всем протяжении элемента. А распределение это в наибольшей степени зависит как раз от типа опирания. На 16 показаны диаграммы изгибающих моментов при пяти разных типах опирания и равномерном распределении нагрузки по всей длине балки. По этим примерам можно видеть, какие значительные различия можно наблюдать в работе балок. Сохраняется прежнее правило — диаграмма чертится со стороны растягиваемого слоя. В огромном диапазоне размеров, которые характеризуют эти два столь разных по масштабам явления, фигурируют сотни и тысячи современных решений, имеющих свой облик и специфику, свое назначение и возможности, свое место в жизни. На облик всякой конструктивной формы, и в частности на балочную конструкцию, большое влияние оказывают три фактора: материал, назначение и метод строительства. А так как число возможных комбинаций практически необозримо, не стоит удивляться бесчисленному множеству решений, в которых основным элементом оказывается балка. Итак, при одной и той же нагрузке и при одном и том же пролете балок в первых четырех (основных) случаях опирания картина совершенно различна. Крайнее сечение так называемой консольной балки, жестко заделанной с одной стороны, просто испускает последний вздох — на него действует изгибающий момент такой огромной величины, какая только возможна в случае балок. И наоборот, с приближением к другому, свободному концу балки сечение резко разгружается до такой степени, что моменты становятся равными нулю (на самом краю консоли). Для балки с постоянным поперечным сечением это может означать, что вложенный материал используется крайне неполноценно. В полную силу своих возможностей работает только материал в сечении, которое находится в месте заделки. Но прежде чем рассматривать разнообразнейшие формы элементов этого типа, мы обязательно должны познакомиться с некоторыми особенностями работы балки. Двумя основными рычагами, с помощью которых конструктор может в известных целесообразных пределах регулировать эту работу, являются тип опирания и вид поперечного сечения. 1 Диаграммы (или эпюры) изгибающих моментов в балках при различных типах опирания Это можно проверить путем сравнения с деформированной линией балки или, как сказали бы специалисты, с линией упругости. Значительно эффективнее распределяются моменты в двух других случаях: когда балка с одной стороны жестко закреплена, а с другой свободно опирается или когда жестко закреплены оба ее конца. В отличие от случая свободного опирания (второй пример) диаграмма более равномерно распределяется по длине балки, величина моментов значительно меньше, так как в одних сечениях растяжению подвергаются нижние, а в других верхние слои. Материал здесь используется более полноценно: наблюдается меньшее провисание. При таких условиях опирания сокращается расход материала, а следовательно, решение более экономично. На первый взгляд, закрепление балки с одной стороны (консоль) кажется абсолютно абсурдным типом опирания. Однако часто это единственно возможное решение (например, в случае различных козырьков, эркеров и балконов), а иногда даже и целесообразное. Следует отметить, что консоль лежит в основе и некоторых весьма эффективных мостовых конструкций с большими пролетами. Самым большим консольным мостом до сих пор остается мост на р. Св. Лаврентия близ Квебека, о котором мы уже рассказывали и который все же был наконец построен. Его центральная ферма с двух сторон свободно опирается на две береговые консоли, каждая из которых имеет длину 177 м. Подобная односторонняя реакция (растяжению здесь подвергаются лишь нижние слои, тогда как в консоли верхние) наблюдается и у балки, свободно опертой с двух сторон. Однако здесь максимальная величина изгибающего момента, которая на этот раз регистрируется в середине элемента, в четыре раза меньше, чем в консольной балке. Рассмотренные статические схемы являются весьма идеализированным подобием реальных условий работы простейших балочных конструкций. В действительности же они работают при гораздо более сложных условиях опирания и самых разнообразных комбинациях нагрузок подвижных и неподвижных, статических и динамических, сосредоточенных и распределенных. Цель статического исследования состоит в том, чтобы на идеализированной схеме, максимально приближенной к реальности, установить максимальную величину усилий для достаточно большого числа балки. Но не следует думать, что последние два случая опирания балок самые распространенные. К сожалению, использование того или другого типа опирания связано с большими или меньшими, а часто и непреодолимыми трудностями. Свободное опирание (самый архаичный его тип) остается самым распространенным вариантом, хотя балки в этом случае работают и не самым эффективным образом. Обусловлено это простотой такого типа опирания. Для сборного строительства (из дерева, стали или железобетона) этот тип опирания обеспечивает минимальные затраты труда и средств при выполнении соединений. А ведь именно соединения при таком роде строительства являются одним из самых уязвимых мест. В то же время трудно представить себе конструкцию, которая гарантировала бы полное и абсолютно жесткое закрепление элемента хотя бы с одной стороны. Относительная гибкость элементов и неизбежное ослабление отдельных узлов ограничивают такую возможность. Поэтому на практике в различных видах конструкций перекрытия и крыши чаще всего встречается частичное закрепление балок. В ограниченных пределах это приводит к перераспределению моментов и обеспечивает тот положительный эффект, о котором мы упоминали. Таким случаем являются все жесткие рамные узлы железобетонных конструкций. Итак, тайна раскрыта: возникают тангенциальные напряжения, которые действуют одновременно и в вертикальном, и в горизонтальном направлении. Именно этим объясняется их двойственная роль — стремление к срезу и стремление к смещению отдельных слоев. Когда преодолеваемый пролет очень велик и есть возможность возведения промежуточных опор (и это выгодно), они возводятся. Получается конструкция, статическая схема которой чаще всего выглядит так, как показано на 16 (неразрезная балка). По схеме видно, что такая форма опирания весьма целесообразна: максимальные моменты относительно малы (по сравнению со свободно опертой балкой), так как они распределены по всей оси балки. Условия сборного строительства требуют расчленения такой непрерывной балки на отдельные элементы соответствующего веса и габаритов в целях обеспечения возможности их транспортировки и монтажа. Это расчленение совершенно логично осуществляется в так называемых нулевых точках, где изгибающие моменты изменяют знак, т. е. становятся равными нулю. Если при этом монтажные соединения являются не жесткими, а шарнирными (что значительно проще), получаются различные несущие системы. Чаще всего такие системы применяются в мостостроении, но иногда используются и в качестве второстепенных элементов в конструкциях покрытий (деревянных и стальных). По высоте сечения поперечная сила распределяется по параболическому закону; поэтому напряжения, которые действуют в плоскости сечения, в отличие от нормальных напряжений, называются тангенциальными. Они достигают максимальной величины там, где нормальные напряжения изгиба равны нулю. В таком случае взаимное смещение слоев балки будет различным: максимальным в средних слоях и постепенно уменьшающимся в направлении верхних и нижних. На 17 показана сдвигающая сила в середине балки для линейной единицы ее длины. А теперь несколько слов о реальных балках. Следует помнить, что изгибающий момент и связанные с ним нормальные напряжения далеко не единственный результат воздействия нагрузки на балку. В этом мы можем убедиться, вернувшись к 1 Представленная там модель сослужила нам хорошую службу при рассмотрении эффекта, возникающего при изгибе. Однако если внимательно вглядеться в рисунок, можно заметить, что здесь не все в порядке. Балка, состоящая из отдельных, не связанных между собой слоев, существовать не может. Она будет деформироваться, срезаться таким образом, как это показано на 17, и в конечном счете разрушится. Очевидно, при воздействии внешней нагрузки наблюдается еще какой-то срезающий эффект. Проделаем небольшой опыт. Если перекинуть через канаву две доски, положенные одна на другую, и встать на этот импровизированный мостик , можно заме-. тить, что доски работают независимо одна от другой: в плоскости соприкосновения одна скользит по другой. Явно возникают силы взаимного скольжения и поскольку сдерживающие силы (силы трения) меньше, происходит смещение. В целостной, монолитной балке подобное взаимное скольжение слоев ограничивается, так как частицы материала сильно связаны между собой. А как мы уже знаем, любое препятствие на пути деформаций ведет к возникновению внутренних сил и напряжений, в данном случае напряжений сдвига. На этом рисунке показана диаграмма поперечных сил, которые служат основной причиной описанных явлений в свободно опертой балке при равномерно распределенной нагрузке. Физически их можно интерпретировать как соответствующую часть вертикальной нагрузки, которая переносится через данное сечение. Очевидно, что у опор эта часть является наибольшей и равна реакции опор — в конечном счете там сходится вся внешняя нагрузка. Сечение в середине балки не нагружено поперечной силой, поскольку нагрузка передается влево и вправо от него в направлении опор. Однако именно в этом месте изгибающий момент имеет наибольшую величину. Однако здесь есть одна тонкость. Одновременное действие нормального и тангенциального напряжений в данной точке выражается их равнодействующей, которая называется главным напряжением. В сущности, это не совсем так. В каждой точке объема балки существуют два взаимно перпендикулярных направления, которые подвергаются соответственно чистому растяжению и чистому сжатию. 1 Проблема далеко не исчерпывается изгибом. Почти всегда он сопровождается поперечными силами, которые вызывают тангенциальные напряжения (в плоскости сечения). Эффект здесь как бы сдвоен: стремление к перерезанию элемента и стремлению к расслоению, сдвигу отдельных его слоев Есть два способа, с помощью которых конструктор может регулировать работу балки в целесообразных пределах, выбор типа опирания (о котором мы уже говорили) и выбор типа поперечного сечения. Рассмотрим второй из них. 1 При одном и том же расходе материала более целесообразные формы поперечного сечения обладают гораздо большим сопротивлением изгибу Балка прямоугольного сечения, поставленная на ребро, обладает еще большей несущей способностью, что заметил еще Галилей. Вообще цель конструктора — размещение как можно большей массы над и под центром тяжести сечения. На 18 приводится сопоставление так называемых моментов сопротивления (измеряемых в смЗ) для различных сечений одной и той же площади, т. е. эквивалентных по расходу материала. Как можно видеть, с растягиванием сечения по высоте его сопротивление резко возрастает, достигая наибольшей величины в случае некоторых прокатных стальных профилей. Величина этих главных нормальных напражений значительно больше, и иногда именно они 21 см определяют облик и судьбу конструкций. Но нахождение совсем не легкая работа, а на-еще труднее рассматриваемых главных напряжении хождение точек, где величина напряжений наибольшая, Причем для каждого материала ведущим является определенный вид напряжения, и поэтому детальное исследование стальной балки достаточно сильно отличается от детального исследования, например, предварительно напряженной железобетонной балки. Все это очень сложно ... и вряд ли стоит залезать в дебри, где порой с трудом ориентируются даже сами специалисты. В случае применения стали прямоугольное сечение является исключением. Для такого дорогого, тяжелого и технологического материала прямоугольная форма элемента, подвергающегося нагрузке на изгиб, была бы невероятным расточительством, не говоря уже об излишнем утяжелении конструкции. Поэтому основной формой стальных элементов являются различные сложные профили, обеспечивающие наибольший эффект их работы в конструкции. Первая балка, использованная человеком, вероятно, представляла собой круглый ствол срубленного дерева. Круг может быть рациональным во многих отношениях, но для элемента, работающего на изгиб, эта форма сечения нерациональна. Сопротивление круга приблизительно на 12% меньше, чем у квадрата такой же площади. На столько же будет тяжелее круглая балка из-за своей нерациональной формы. Составные деревянные балки бывают главным образом двух видов — на гвоздевых соединениях и клееные. В первом случае стенка выполняется из двух слоев досок, сколоченных между собой под углом 45° относительно оси балки, т. е. под углом 90° один к другому. К нижнему и верхнему краям стенки прибивают мощные пояса из балок. Клееные конструкции выполняют приблизительно таким же образом, только стенка состоит из листов фанеры, соединенных с помощью синтетических клеящих составов. У балок типа стенка-пояс отчетливо выражена дифференциация в восприятии нормальных и поперечных усилий. Это не значит, что прямоугольное сечение применяется редко. Трудность в том, что форма сечения определяется рядом обстоятельств. Кроме конструктивных, технологических, эстетических и функциональных соображений большое значение имеет и вид материала. Для всех монолитных и даже для некоторых сборных железобетонных конструкций прямоугольная форма наиболее желательна, поскольку она обусловливает самую легкую и простую опалубку. По вполне понятным причинам лесоматериалы тоже имеют вид элементов прямоугольного сечения (доски, рейки, бруски и т. д.). Наиболее отчетливо эта система выступает в случае применения стальных составных балок. В связи с тонкостью стенки ее усиливают специальными ребрами жесткости. Такие ребра можно видеть также у составных деревянных балок и у некоторых тонкостенных балок из железобетона. Прямоугольное сечение составляет исключение независимо от материала в случаях, когда речь идет о преодолении пролетов большой величины. В этих случаях собственный вес имеет решающее значение и потому должен быть сведен к минимуму. В железобетонных конструкциях для этого приходится идти на неизбежные компромиссы с опалубкой, чтобы получить хоть и не такие стройные, как стальные, но все же достаточно эффективные тавровые или двутавровые сечения. С деревянными конструкциями дело обстоит проще, поскольку из отдельных элементов прямоугольного сечения можно получить составные сечения более сложной, но более эффективной формы. В случае материалов с ярко выраженными различиями между прочностью на сжатие и прочностью на растяжение форма поперечного сечения асимметрична — верхний и нижний пояса имеют разные размеры. Например, чисто бетонная балка (хотя вряд ли где-нибудь применяются такие балки) должна отличаться более сильным нижним поясом, подвергающимся нагрузке на растяжение, так как прочность бетона на растяжение в 10—20 раз меньше, чем на сжатие. У железобетонных балок положение противоположное. Благодаря стальной арматуре зона растяжения относительно сильная, следовательно, должна быть обеспечена равная прочность зоны сжатия, которая выполнена из гораздо более слабого бетона. Равная прочность достигается в этом случае только за счет увеличения сечения зоны сжатия. Если тонкие и стройные стенки воспринимают главным образом поперечные усилия (тангенциальные напряжения), то мощные пояса, в которых сконцентрирована основная масса элемента и притом на значительном расстоянии от центра тяжести, воспринимают нормальные усилия изгиба. Одна из самых рациональных форм, отличающаяся высокой прочностью на изгиб и кручение, завоевывает в последние годы все большую популярность, особенно в мостостроении. Это закрытое коробчатое сечение. Такое сечение имеют, например, балки трех центральных пролетов Аспаруховского моста в Варне. Конструкция по статической схеме представляет собой непрерывную балку на четырех опорах. Коробчатое сечение балки, ширина которого равна ширине путевого полотна, образовано мощными стальными листами толщиной более 20 мм. В этом случае едва ли даже подходит слово балка . Это сложная пространственная конструкция, для детального исследования которой необходим гораздо более точный аппарат, чем тот, которым располагает сопромат. Но этот вид конструкций уже выходит за рамки рассматриваемой нами темы. У железобетона стремление к утонченности сечений наиболее ярко выражено в предварительно напряженных элементах. Но за счет этого они перекрывают значительные расстояния между опорами — до 50-60 м при свободно опертых балках (чаще всего в мостостроении) и до 70-80 м при частично защемленных балках из монолитных рам. Профиль из предварительно напряженного железобетона по изяществу силуэта приближается к стальному прокату. А как обстоит дело с высотой сечения? С одной стороны, чем она больше, тем меньше нормальные напряжения изгиба и тем легче пояса балок. Однако, с другой стороны, чрезмерное увеличение высоты тоже] приводит к перерасходу материала. Это объясняется тем, что сэкономленный материал поясов начинает вкладываться в стенку, ставшую неоправданно высокой. Нахождение оптимальной высоты тоже работа не из легких. Но очень часто высота бывает обусловлена совсем не конструктивными соображениями. Так, например, в конструкциях перекрытия наблюдается стремление к минимальной высоте, поскольку большая часть строительного объема здания будет занята конструкцией, а не обитателями, что совершенно недопустимо, не говоря уже о дополнительных расходах, связанных с необходимостью обогревания зимой этого мертвого , неиспользуемого объема. Во всех случаях высота балки (когда она не ограничивается никакими дополнительными обстоятельствами) определяется на основе технико-экономических условий, различных для разных типов и видов конструкций. Она может составлять от 1/7 до 1/12 пролета при деревянных и железобетонных балках и менее 1/20 при предварительно напряженном железобетоне и стали.
Фундаменты на проса дочных грунтах. Кровли из асбестоцементаых плоских и волнистых листов. Кровли из мягких материалов. Крыши бань и саун. Легированные стали и твердые сплавы. Малярные работы. Материалы и изделия из горных пород. Главная Свойства 0.001 |